Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 27 | 1 |

Tytuł artykułu

Propeller hydrodynamic characteristics in oblique flow by unsteady ranse solver

Warianty tytułu

Języki publikacji



Propellers may encounter oblique flow during operation in off-design conditions. Study of this issue is important from the design and ship performance points of view. On the other hand, a propeller operating in oblique flow may sometimes result in a better propulsion efficiency. The main goal of the present study is to provide an insight on the propeller characteristics in the oblique flow condition. In this research, the performance of the DTMB 4419 propeller is studied by the numerical method based on solving Reynolds Averaged Navier‒Stokes (RANS) equations in several inflow angles. The sliding mesh approach is used to model the rotary motion of the propeller. Initially, the numerical method is verified by grid and time step dependency analysis at various inflow angles. Additionally, computed results at zero inflow angle are compared with the available experimental data and good agreement is achieved. Finally, the forces and moments acting on the propeller are obtained for 0° to 30° inflow angles. It is concluded that the inflow angle up to 10° has no significant influence on the thrust and torque coefficients as well as the propeller efficiency. However, at high angles up to 30°, the thrust and torque coefficients increase as the inflow angle increases, which may result in a significant improvement of propeller efficiency

Słowa kluczowe








Opis fizyczny



  • Amirkabir University of Technology, Hafez, 15875-4413 Tehran, Iran
  • Amirkabir University of Technology, Hafez, 15875-4413 Tehran, Iran


  • 1. Abbasi A., Ghassemi H., Fadavie M. (2018): Hydrodynamic Characteristic of the Marine Propeller in the Oblique Flow with Various Current Angle by CFD Solver. American Journal of Marine Science, 6(1), 25–29.
  • 2. Atsavapranee P. (2010): Steady-turning experiments and RANS simulations on a surface combatant hull form (Model# 5617). 28th Symposium on Naval Hydrodynamics, Pasadena, 2010.
  • 3. Broglia R., Dubbioso G., Durante D., Di Mascio A. (2013): Simulation of turning circle by CFD: Analysis of different propeller models and their effect on maneuvering prediction. Applied Ocean Research, 39, 1–10.
  • 4. Chase N., Carrica P. M. (2013): Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Engineering, 60, 68–80.
  • 5. Coleman R. P., Feingold A. M., Stempin C. W. (1945): Evaluation of the induced-velocity field of an idealized helicopter rotor. National Aeronautics and Space Administration, Hampton, VA; Langley Research Center.
  • 6. Coraddu A., Dubbioso G., Mauro S., Viviani M. (2013): Analysis of twin-screw ships’ asymmetric propeller behavior by means of free running model tests. Ocean Engineering, 68, 47–64.
  • 7. Dubbioso G., Durante D., Broglia R., Mauro S. (2012): Comparison of experimental and CFD results for a tankerlike vessel. Proceedings of MARSIM, 2012.
  • 8. Dubbioso G., Muscari R., Di Mascio A. (2013): Analysis of the performances of a marine propeller operating in oblique flow. Computers & Fluids, 75, 86–102
  • 9. Dubbioso G., Muscari R., Di Mascio A. (2014): Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Computers & Fluids, 92, 56–81.
  • 10. Dubbioso G., Muscari R., Ortolani F., Di Mascio A. (2017): Analysis of propeller bearing loads by CFD. Part I: straight ahead and steady turning maneuvers. Ocean Engineering, 130, 241–259.
  • 11. Dubbioso G., Muscari R., Di Mascio A., eds. (2013): CFD analysis of propeller performance in oblique flow. 3rd International Symposium on Marine Propulsors, SMP, 2013.
  • 12. Durante D., Broglia R., Muscari R., Di Mascio A. (2010): Numerical simulations of a turning circle maneuver or a fully appended hull. 28th Symposium on Naval Hydrodynamics, Pasadena, CA.
  • 13. Hochbaum A. C. (2006): Virtual PMM tests for maneuvering prediction. 26th Symposium on Naval Hydrodynamics, Rome, Italy.
  • 14. Jessup S. (1998): Experimental Data for RANS Calculations and Comparisons (DTMB P4119). 22nd ITTC Propulsion Committee Propeller RANS. Panel Method Workshop, Grenoble.
  • 15. Koyama K. (1993): Comparative calculations of propellers by surface panel method. Workshop organized by 20th ITTC Propulsor Committee. Ship Research Institute, Supplement, 1993 (15).
  • 16. Krasilnikov V., Zhang Z., Hong F., eds. (2009): Analysis of unsteady propeller blade forces by RANS. 1st International Symposium on Marine Propulsors (SMP), Trondheim, Norway, June, 2009.
  • 17. Menter F. R., Kuntz M., Langtry R. (2003): Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–32.
  • 18. Nakisa M., Abbasi M. J., Amini A. M. (2010): Assessment of marine propeller hydrodynamic performance in open water via CFD. Proceedings of 7th International Conference on Marine Technology (MARTEC 2010),Dec. 2010.
  • 19. Ortolani F., Mauro S., Dubbioso G. (2015): Investigation of the radial bearing force developed during actual ship operations. Part 1: Straight ahead sailing and turning maneuvers. Ocean Engineering, 94, 67–87.
  • 20. Ortolani F., Mauro S., Dubbioso G. (2015): Investigation of the radial bearing force developed during actual ship operations. Part 2: Unsteady maneuvers. Ocean Engineering, 106, 424–45.
  • 21. Rhee S. H., Joshi S. (2005): Computational validation for flow around a marine propeller using unstructured mesh based Navier-Stokes solver. JSME International Journal, Series B, Fluids and Thermal Engineering, 48(3), 562–70.
  • 22. Ribner H. S. (1945): Propellers in yaw. NACA.
  • 23. Shamsi R., Ghassemi H. (2017): Determining the Hydrodynamic Loads of the Marine Propeller Forces in Oblique Flow and Off-Design Condition. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 41(2), 121–7.
  • 24. Shamsi R., Ghassemi H. (2013): Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors. International Journal of Naval Architecture and Ocean Engineering, 5(2), 287–301.
  • 25. Simonsen C. D., Otzen J. F., Klimt C., Larsen N. L., Stern F., eds. (2012): Maneuvering predictions in the early design phase, using CFD generated PMM data. 29th Symposium on Naval Hydrodynamics.
  • 26. Viviani M., Podenzana Bonvino C., Mauro S., Cerruti M., Guadalupi D., Menna A. (2007): Analysis of asymmetrical shaft power increase during tight maneuvers. 9th International Conference on Fast Sea Transportation (FAST2007), Shanghai, China, 2007.
  • 27. Wilcox D. C. (1998): Turbulence modeling for CFD. DCW Industries, La Canada, CA.
  • 28. Yao J. (2015): Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations. International Journal of Naval Architecture and Ocean Engineering, 7(1), 56–69.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.