PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 75 | 12 |

Tytuł artykułu

Rola czynników troficznych w rozwoju i regeneracji mięśni szkieletowych

Warianty tytułu

EN
Role of trophic factors in development and regeneration of skeletal muscles

Języki publikacji

PL

Abstrakty

EN
The process of skeletal muscle development is regulated by many biologically active factors, which are responsible for stimulating the proliferation and differentiation of muscle cells. Biologically active factors function in paracrine, autocrine and endocrine manner to control myogenesis. The main regulators include hormones, growth and differentiation factors, as well as cytokines. The process of skeletal muscle regeneration associated with the activation of satellite cells for their proliferation and differentiation requires the involvement of many growth factors secreted by the surrounding tissue, including inflammatory cells, blood vessels and damaged muscle fiber, as well as extracellular matrix. A number of trophic factors regulating the activity of satellite cells during muscle regeneration have been identified, e.g. fibroblast growth factors, transforming growth factors-β, insulin-like growth factors, hepatocyte growth factor, tumor necrosis factor-α, interleukin-6. These factors are responsible for maintaining a balance between the processes of proliferation and differentiation of satellite cells in order to restore the proper architecture and functioning of muscle tissue.

Wydawca

-

Rocznik

Tom

75

Numer

12

Opis fizyczny

s.713-718,rys.,fot.,bibliogr.

Twórcy

  • Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Katedra Żywienia Człowieka, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159C, 02-776 Warszawa
autor
  • Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • Adams G. R., McCue S. A.: Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J. Appl. Physiol. 1998, 84, 1716-1722.
  • Ahmad S., Jan A. T., Baig M. H., Lee E. J., Choi I.: Matrix gla protein: An extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sci. 2017, 172, 55-63.
  • Austin L., Bower J. J., Bennett T. M., Lynch G. S., Kapsa R., White J. D., Barnard W., Gregorevic P., Byrne E.: Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle Nerve 2000, 23, 1700-1705.
  • Bazgir B., Fathi R., Rezazadeh Valojerdi M., Mozdziak P., Asgari A.: Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair. Cell J. 2017, 18, 473-484.
  • Bentzinger C. F., von Maltzahn J., Rudnicki M. A.: Extrinsic regulation of satellite cell specification. Stem Cell Res. Ther. 2010, 1, 27.
  • Bischoff R.: Chemotaxis of skeletal muscle satellite cells. Dev. Dyn. 1997, 208, 505-515.
  • Bogdanovich S., Krag T. O., Barton E. R., Morris L. D., Whittemore L. A., Ahima R. S., Khurana T. S.: Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002, 420, 418-421.
  • Camporez J. P., Petersen M. C., Abudukadier A., Moreira G. V., Jurczak M. J., Friedman G., Haqq C. M., Petersen K. F., Shulman G. I.: Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc. Natl. Acad. Sci. USA 2016, 113, 2212-2217.
  • Cantini M., Carraro F.: Control of cell proliferation by macrophage-myoblast interactions. Basic Appl. Myol. 1996, 6, 485-489.
  • Chakravarthy M. V., Davis B. S., Booth F. W.: IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J. Appl. Physiol. 2000, 89, 1365-1379.
  • Chargé S. B., Rudnicki M. A.: Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004, 84, 209-238.
  • Chen S. E., Gerken E., Zhang Y., Zhan M., Mohan R. K., Li A. S., Reid M. B., Li Y. P.: Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle. Am. J. Physiol. Cell Physiol. 2005, 289, C1179-1187.
  • Chen S. E., Jin B., Li Y. P.: TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am. J. Physiol. Cell Physiol. 2007, 292, C1660-1671.
  • Cuenda A., Cohen P.: Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J. Biol. Chem. 1999, 274, 4341-4346.
  • Du M., Tong J., Zhao J., Underwood K. R., Zhu M., Ford S. P., Nathanielsz P. W.: Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51-60.
  • Formicola L., Pannérec A., Correra R. M., Gayraud-Morel B., Ollitrault D., Besson V., Tajbakhsh S., Lachey J., Seehra J. S., Marazzi G, Sassoon D. A.: Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle. Front. Physiol. 2018, 9, 515.
  • Franzén P., ten Dijke P., Ichijo H., Yamashita H., Schulz P., Heldin C. H., Miyazono K.: Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell 1993, 75, 681-692.
  • Gal-Levi R., Leshem Y., Aoki S., Nakamura T., Halevy O.: Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim. Biophys. Acta 1998, 1402, 39-51.
  • Grobet L., Martin L. J., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dunner S., Ménissier F., Massabanda J., Fries R., Hanset R., Georges M.: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 1997, 17, 71-74.
  • Hawke T. J., Garry D. J.: Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 2001, 91, 534-551.
  • Jones N. C., Tyner K. J., Nibarger L., Stanley H. M., Cornelison D. D., Fedorov Y. V., Olwin B. B.: The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J. Cell Biol. 2005, 169, 105-116.
  • Joulia D., Bernardi H., Garandel V., Rabenoelina F., Vernus B., Cabello G.: Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp. Cell Res. 2003, 286, 263-275.
  • Kambadur R., Sharma M., Smith T. P., Bass J. J.: Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7, 910-916.
  • Kami K., Senba E.: Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle. Muscle Nerve 1998, 21, 819-822.
  • Kan I., Melamed E., Offen D.: Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb. Exp. Pharmacol. 2007, 219-242.
  • Kirk S., Oldham J., Kambadur R., Sharma M., Dobbie P., Bass J.: Myostatin regulation during skeletal muscle regeneration. J. Cell Physiol. 2000, 184, 356-363.
  • Kocamis H., McFarland D. C., Killefer J.: Temporal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken. J. Cell Physiol. 2001, 186, 146-152.
  • Kurek J. B., Bower J. J., Romanella M., Koentgen F., Murphy M., Austin L.: The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve 1997, 20, 815-822.
  • Lee E. J., Jan A. T., Baig M. H., Ashraf J. M., Nahm S. S., Kim Y. W., Park S. Y., Choi I.: Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J. 2016, 30, 2708-2719.
  • Lee S. J.: Extracellular Regulation of Myostatin: A Molecular Rheostat for Muscle Mass. Immunol. Endocr. Metab. Agents Med. Chem. 2010, 10, 183-194.
  • Li Y. P., Schwartz R. J.: TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J. 2001, 15, 1413-1415.
  • Liu X., Liu Y., Zhao L., Zeng Z., Xiao W., Chen P.: Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration. Cell Biol. Int. 2017, 41, 228-238.
  • Mahdy M. A. A.: Skeletal muscle fibrosis: an overview. Cell Tissue Res. 2018, DOI: 10.1007/s00441-018-2955-2.
  • Martin J. F., Li L., Olson E. N.: Repression of myogenin function by TGFbeta 1 is targeted at the basic helix-loop-helix motif and is independent of E2A products. J. Biol. Chem. 1992, 267, 10956-10960.
  • Matheny R. W. Jr, Carrigan C. T., Abdalla M. N., Geddis A. V., Leandry L. A., Aguilar C. A., Hobbs S. S., Urso M. L.: RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth Horm. IGF Res. 2017, 32, 14-21.
  • McPherron A. C., Lee S. J.: Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457-12461.
  • Musarò A., McCullagh K., Paul A., Houghton L., Dobrowolny G., Molinaro M., Barton E. R., Sweeney H. L., Rosenthal N.: Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 2001, 27, 195-200.
  • Nöth U., Rackwitz L., Steinert A. F., Tuan R. S.: Cell delivery therapeutics for musculoskeletal regeneration. Adv. Drug Deliv. Rev. 2010, 62, 765-783.
  • Oksbjerg N., Gondret F., Vestergaard M.: Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest. Anim. Endocrinol. 2004, 27, 219-240.
  • Olson E. N.: Interplay between proliferation and differentiation within the myogenic lineage. Dev. Biol. 1992, 154, 261-272.
  • Ono S., Yoshida N., Maekawa D., Kitakaze T., Kobayashi Y., Kitano T., Fujita T., Okuwa-Hayashi H., Harada N., Nakano Y., Yamaji R.: 5-Hydroxy-7-methoxyflavone derivatives from Kaempferia parviflora induce skeletal muscle hypertrophy. Food Sci. Nutr. 2018, 7, 312-321.
  • Pawlikowski B., Vogler T. O., Gadek K., Olwin B. B.: Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev. Dyn. 2017, 246, 359-367.
  • Pojda Z., Machaj E., Kurzyk A., Mazur S., Dębski T., Gilewicz J., Wysocki J.: Mezenchymalne komórki macierzyste. Post. Biochemii 2013, 59, 187-197.
  • Rebbapragada A., Benchabane H., Wrana J. L., Celeste A. J., Attisano L.: Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol. Cell Biol. 2003, 23, 7230-7242.
  • Rhoads R. P., Fernyhough M. E., Liu X., McFarland D. C., Velleman S. G., Hausman G. J., Dodson M. V.: Extrinsic regulation of domestic animal-derived myogenic satellite cells II. Domest. Anim. Endocrinol. 2009, 36, 111-126.
  • Ríos R., Carneiro I., Arce V. M., Devesa J.: Myostatin regulates cell survival during C2C12 myogenesis. Biochem. Biophys. Res. Commun. 2001, 280, 561-566.
  • Rodgers J. T., Schroeder M. D., Ma C., Rando T. A.: HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into GAlert. Cell Rep. 2017, 19, 479-486.
  • Saera-Vila A., Kish P. E., Kahana A.: Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish. Cell Signal. 2016, 28, 1196-1204.
  • Segalés J., Perdiguero E., Muñoz-Cánoves P.: Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway. Front. Cell Dev. Biol. 2016, 4, 91.
  • Sharples A. P., Hughes D. C., Deane C. S., Saini A., Selman C., Stewart C. E.: Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015, 14, 511-523.
  • Shibaguchi T., Maeoka T., Yoshihara T., Naito H., Goto K., Yoshioka T., Sugiura T.: Age-related changes in myostatin expression in rat skeletal muscles. J. Phys. Fitness Sports Med. 2018, 7, 221-227.
  • Snijders T., Nederveen J. P., McKay B. R., Joanisse S., Verdijk L. B., van Loon L. J., Parise G. L.: Satellite cells in human skeletal muscle plasticity. Front. Physiol. 2015, 6, 283.
  • Spangenburg E. E., Booth F. W.: Multiple signaling pathways mediate LIFinduced skeletal muscle satellite cell proliferation. Am. J. Physiol. Cell Physiol. 2002, 283, C204-211.
  • Stepień-Wyrobiec O., Hrycek A., Wyrobiec G.: Transforming growth factor beta (TGF-beta): its structure, function, and role in the pathogenesis of systemic lupus erythematosus. Postepy Hig. Med. Dosw. (Online) 2008, 62, 688-693.
  • Suzuki J., Yamazaki Y., Li G., Kaziro Y., Koide H.: Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol. Cell Biol. 2000, 20, 4658-4665.
  • Taylor W. E., Bhasin S., Artaza J., Byhower F., Azam M., Willard D. H. Jr, Kull F. C. Jr, Gonzalez-Cadavid N.: Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E221-228.
  • Tidball J. G., Welc S. S.: Macrophage-Derived IGF-1 Is a Potent Coordinator of Myogenesis and Inflammation in Regenerating Muscle. Mol. Ther. 2015, 23, 1134-1135.
  • Tonkin J., Temmerman L., Sampson R. D., Gallego-Colon E., Barberi L., Bilbao D., Schneider M. D., Musarò A., Rosenthal N.: Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization. Mol. Ther. 2015, 23, 1189-1200.
  • Wang H., Hertlein E., Bakkar N., Sun H., Acharyya S., Wang J., Carathers M., Davuluri R., Guttridge D. C.: NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol. Cell Biol. 2007, 27, 4374-4387.
  • White J. D., Bower J. J., Kurek J. B., Austin L.: Leukemia inhibitory factor enhances regeneration in skeletal muscles after myoblast transplantation. Muscle Nerve 2001, 24, 695-697.
  • Whittemore L. A., Song K., Li X., Aghajanian J., Davies M., Girgenrath S., Hill J. J., Jalenak M., Kelley P., Knight A., Maylor R., O’Hara D., Pearson A., Quazi A., Ryerson S., Tan X. Y., Tomkinson K. N., Veldman G. M., Widom A., Wright J. F., Wudyka S., Zhao L., Wolfman N. M.: Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 2003, 300, 965-971.
  • Wicik Z., Sadkowski T., Jank M., Motyl T.: Transcriptional pattern of TGF-beta1 inhibitory effect on mouse C2C12 myoblasts differentiation. Pol. J. Vet. Sci. 2010, 13, 629-638.
  • Witt R., Weigand A., Boos A. M., Cai A., Dippold D., Boccaccini A. R., Schubert D. W., Hardt M., Lange C., Arkudas A., Horch R. E., Beier J. P.: Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017, 18, 15.
  • Yablonka-Reuveni Z., Danoviz M. E., Phelps M., Stuelsatz P.: Myogenicspecific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Front. Aging Neurosci. 2015, 7, 85.
  • Yin H., Price F., Rudnicki M. A.: Satellite cells and the muscle stem cell niche. Physiol. Rev. 2013, 93, 23-67.
  • Zetser A., Gredinger E., Bengal E.: p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J. Biol. Chem. 1999, 274, 5193-5200.
  • Zhao Q., Yang S. T., Wang J. J., Zhou J., Xing S. S., Shen C. C., Wang X. X., Yue Y. X., Song J., Chen M., Wei Y. Y., Zhou Q. P., Dai T., Song Y. H.: TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-κB activation and impairment of IGF-1 signaling pathway. Biochem. Biophys. Res. Commun. 2015, 458, 790-795.
  • Zhu M. J., Ford S. P., Nathanielsz P. W., Du M.: Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod. 2004, 71, 1968-1973.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c69e2c94-8868-4f0d-99c5-3119226432bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.