PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 6 |

Tytuł artykułu

Plant peroxidases: biomarkers of metallic sress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The term ‘‘peroxidase’’ designs a group of hemoproteins with a wide structural variability. These enzymes catalyze the redox reaction between hydrogen peroxide and some reductors. They can be found in animals, plants and microorganisms. In plants, peroxidases are involved in numerous cellular processes such as development and stress responses. In fact, they are involved in growth regulation by controlling hormonal and cell wall metabolism and antioxidant defense. On the other hand, these enzymes are considered as a biomarker indicating biotic and abiotic stresses. Under metallic stress conditions, the quantitative and qualitative profiles of peroxidases are generally modified. Such modulations could prove the major role played by these enzymes in the defense mechanism. In this paper, we discussed the variation of isoperoxidases behavior under metallic stress conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

6

Opis fizyczny

p.2075-2082,fig.,ref.

Twórcy

autor
  • Laboratorie de Bio Physiologie Cellulares, Faculte des Sciences de Bizerte, 7021 Zarzouna, Tunisia
autor
  • Laboratorie de Bio Physiologie Cellulares, Faculte des Sciences de Bizerte, 7021 Zarzouna, Tunisia
  • Laboratorie de Bio Physiologie Cellulares, Faculte des Sciences de Bizerte, 7021 Zarzouna, Tunisia

Bibliografia

  • Abdul Jaleel C (2009) Soil salinity regimes alters antioxidant enzyme activities in two varieties of Catharanthus roseus. Bot Res Int 2(2):64–68
  • Abercrombie J, Halfhill M, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CNJ (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87
  • Andrews J, Adams SR, Burton KS, Edmondson RN (2002) Partial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin. J Exp Bot 53(379): 2393–2399
  • Arnison PG, Boll WG (1975) Isoenzymes in cell cultures of bush bean (Phaseolus vulgaris c.v. contender). Isoenzymatic changes during the callus cycle and differences between stock cultures. Can J Bot 53:261–271
  • Barceló J, Vázkez MD, Pschenreder CH (1988) Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot Acta 101:254–261
  • Bouazizi H, Jouili H, El Ferjani E (2007) Copper-induced oxidative stress in maize shoots (Zea mays L.): H₂O₂ accumulation and peroxidases modulation. Acta Biol Hung 58(2):209–218
  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2008) Effect of copper excess on H₂O₂ accumulation and peroxidases activities in bean roots. Acta Biol Hung 59(2):233–245
  • Castillo FJ (1992) Peroxidases and stress. In: Greppin M, Penel C, Gaspar T (eds) Molecular biochemical and physiological aspects of plant peroxidases. University of Geneva, Geneva, pp 209–220
  • Chakarabotry U, Dutta S, Chakarabotry BN (2002) Response of tea plants to water stress. Bio Plantarum 45:557–562
  • Chaoui A, Jarrar B, El Ferjani E (2004) Effects of cadmium and copper on peroxidase NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots. J. Plant Physiol 161:1225–1234
  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56
  • Chen S, Schopfer P (1999) Hydroxyl-radical production in physiological reactions: A novel function of peroxidase. Eur J Biochem 260:726–735
  • Chen EL, Chen YA, Chen LM, Liu ZH (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 444:439
  • Chibbar RN, Van Huystee RB (1986) Immunochemical localization of peroxidase in cultured peanut cells. J plant Physiol 123:477–486
  • Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60(2):391–408
  • Cuypers A, Vangrosveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris; copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876
  • Ezaki B, Tsugita S, Matsumoto H (1996) Expression of a moderately anionic peroxidase induced by aluminium treatment in tobacco callus: possible involvement of peroxidase isozymes in aluminium ion stress. Physiol Plant 96:21–28
  • Fang WC, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76
  • Farell RL, Murtagh KE, Tien M et al (1989) Physical and enzymatic properties of lignin peroxidase isozymes from Phanerochaere chrysosporium. Enzyme Microb Technol 11:322–328
  • Fecht-Christoffers M, Führs H, Braun HP, Horst WJ (2006) The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol 140:1451–1463
  • Gaspar TH, Kevers C, Hausman JF, Faivre-Rampant O, Boyer N, Dommes J, Penel C, Greppin H (2000) Integrating phytohormone metabolism and action with primary biochemical pathways. I. Interrelationships between auxins, cytokinins, ethylene and polyamines in growth and development processes. In: Greppin H, Penel C, Broughton WJ, Strasser R (eds) Integrated plant systems. University of Geneva, Geneva, pp 209–220
  • Gazaryon IG, Lagrimini L, Ashby AG, Thornely NF (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313:841–847
  • Griffing LR, Fowke LC (1985) Cytochemical localization of peroxidase in soybean suspension culture cells and protoplasts ultracellular vacuole differentiation and presence of peroxidase in coated vesicles and multivesicular bodies. Protoplasma 128:22–30
  • Güngör S¸ at I (2008) The effect of heavy metals on peroxidase from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Afr J Biotechnol 7(13):2248–2253
  • Haji Hosseini R, Khanlarian M, Ghorbanly M (2007) Effect of lead on germination, growth and activity of catalase and peroxidase enzyme in root and shoot of two cultivars of Brassica napus L. J Biol Sci 7(4):592–598
  • Hancock J, Desikan R, Clarke A, Hurst R, Neill S (2002) Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiol Biochem 40:611–617
  • Hiraga S, Sazaki K, Ito H, Ohashi Y, Matsui H (2001) A large Family of class III Plant Peroxidases. Plant Cell Physiol 42(5):462–468
  • Hu C, Smith R, Van Huystee R (1989) Biosynthesis and localization of peanut peroxidases: a comparison of the cationic and the anionic isozymes. Plant Physiol 135:391–397
  • Jouili H, El Ferjani E (2003) Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. C R Biologie 326:639–644
  • Jouili H, Bouazizi H, Rossignol M, Borderies G, Jamet E, et El Ferjani E (2008) Partial purification and characterization of a copper-induced anionic peroxidase of sunflower roots. Plant Physiol Biochem 46:760–767
  • Jouili H, Bouazizi H, El Ferjani E (2010) Protein and peroxidase modulations in sunflower seedlings (Helianthus annuus L.) treated with a toxic amount of aluminium. Biol Trace Element Res 138:326–336
  • Khan MH (2007) Induction of oxidative stress and antioxidant metabolism in Calamus Tenuis leaves under chromium and zinc toxicity. Indian J Plant Physiol 12(4):353–359
  • Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Gen Genomics 279:339–357
  • Kvaratskhelia M, Winkel C, Thornelay RN (1997) Purification and characterization of a novel class III peroxidase isoenzyme from tea leaves. Plant Physiol 114:1237–1245
  • Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85
  • Lige B, Ma S, Van Huystee RB (2001) The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch Biochem Biophys 386:17–24
  • Linossier G (1898) Contribution à l’étude des ferments oxydants sur la peroxydase du pus. C R Soc Biol 50:373–375
  • Mäder M (1992) Compartmentation of peroxidase isoenzymes in plant cells. In: Penel C, Gaspar T, Greppin M (eds) Topic and detailed literature on molecular, biochemical and physiological aspects. University of Geneva, Geneva, pp 37–46
  • Metwalli A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56(409):167–178
  • Mika A, Buck F, Luthje S (2008) Membrane-bound class III peroxidases: identification biochemical properties and sequence analysis of isoenzymes purified from maize (Zea mays L.) roots. J Proteomics 71:412–424
  • Mithofer A, Schultze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 566:1–5
  • Otter T, Polle A (1994) The influence of apoplastic ascorbate on the activities of cell-wall associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L.). Plant Cell Physiol 35(8):1231–1238
  • Pandolfini T, Gabrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Titicum aestivum L. Plant Cell Environ 15:719–725
  • Parmar NG, Chanda SV (2005) Effects of mercury and chromium on peroxidase and IAA oxidase enzymes in the seedlings of Phaseolus vulgaris. Turk J Biol 29:15–21
  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Plant Sci 9(11): 534–540
  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265
  • Pickering JW, Powell BL, Wender C et al (1973) Ferulic acid: a substrate for two isoperoxidases from Nicotiana tabacum tissue cultures. Phytochemistry 12:2639–2643
  • Sbartai H, Rouabhi R, Sbartai I, Berrebbah H, Djebar MR (2008) Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). Afr J Plant Sci 2(8):72–76
  • Schönbein CP (1855) Oxidation of tetraguaiacol by oxidases in the presence of hydrogen peroxide. J Practical Chem 66:282
  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 49:775–778
  • Siegel BZ (1993) Plant peroxidases-an organismic perspective. Plant growth Reg 12:303–312
  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van L, Vangrosveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444
  • Sticher L, Penel C, Greppin H (1981) Calcium requirement for the secretion of peroxidase by plant cell suspension. J Cell Sci 48:345–355
  • Takabe K, Takeuchi T, Sato M, Ito M, Fujita M (2001) Immunocytochemical localization of enzymes involved in lignification of the cell wall. J Plant Res 114:1021–1029
  • Tamás L, Huttová J, Mistrík I (2002) Effect of aluminium on peroxidase activity in roots of Al-sensitive and Al-resistant barley cultivars
  • Theorell H (1942) Plant peroxidase. Enzymologia 10:250
  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene. 288:129–138
  • Van Assche F, Clijsters HMM (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206
  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963
  • Welinder KG (1979) Amino acid sequence studies of horseradish peroxidase. Eur J Biochem 96:483–502
  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393
  • Wu F, Dong J, Jia G, Zheng S, Zhang G (2006) Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China 5(1):68–76
  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56(20):9676–9684
  • Źróbek-Sokolnik A, Górska K, Górecki RJ (2007) Heavy metalsinduced hydrogen peroxide production in tobacco cells. Pol J Nat Sci 22(2):196–203

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c6819f24-5121-4469-a46a-b2e3cfb79781
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.