PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Effect of stress caused by electromagnetic stimulation on the fluorescence lifetime of chlorophylls in alfalfa leaves

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The experimental material consisted of leaves obtained from 6- and 2-year-old alfalfa plants. Samples were obtained from a field experiment. One day prior to sowing, seeds were stimulated using He-Ne laser light with a surface power density of 6 mW∙cm⁻² – free-fall exposure (L) repeated three times; alternating magnetic field with 30 mT induction and 30 s (P) exposure time; and a combination of laser light and magnetic field (L+P). The results of the stimulation treatments were referenced to non-stimulated samples (control – K). The obtained values of fluorescence lifetime varied from 8.98 to 12.90 ns (t1) and from 3.84 to 5.14 ns (t2). The physical factors applied caused an extension of the lifetimes (t1 and t2), as well as an increase in the chlorophyll a and carotenoid content in 6-year-old cv. Radius leaves, as compared to the control. Contrary observations (i.e., a decrease in the aforementioned indicators) were made for cv. Ulstar (old). In the case of magnetic field stimulation, the longest fluorescence lifetimes, the highest concentrations of chlorophyll a and carotenoids were noted for cv. Radius (old). The content of chlorophyll a was significantly higher in young Lucerne than in older plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3133-3143,fig.,ref.

Twórcy

  • Department of Biophysics, University of Life Sciences, Lublin, Poland
autor
  • Department of Plant Production Technology and Commodity Science, University of Life Sciences, Lublin, Poland
  • Department of Analysis and Differential Equations, Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Chelkowski Institute of Physics, University of Silesia, Katowice, Poland
  • Department of Biophysics, University of Life Sciences, Lublin, Poland

Bibliografia

  • 1. DZIWULSKA-HUNEK A., KORNARZYŃSKI K., MATWIJCZUK A., PIETRUSZEWSKI S., SZOT B. Effect of laser and variable magnetic field simulation on amaranth seeds germination. International Agrophysics 23, 229, 2009.
  • 2. HERNANDEZ A.C., DOMINGUEZ P.A., CRUZ O.A., JVANOV R., CARBALLO C.A., ZEPEDA B.R. Laser in agriculture. International Agrophysics 24, 407, 2010.
  • 3. MARTÍNEZ E., FLÓREZ M., MAQUEDA R., CARBONELL M.V., AMAYA J.M. Pea (Pisum sativum L.) and lentil (Lens culinaris Medik) growth stimulation due to exposure to 125 and 250 mT stationary fields. Polish Journal of Environmental Studies 18, 657, 2009.
  • 4. NIMMI V., MADHU G. Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chilli (Capsicum annum L.). International Agrophysics 23, 195, 2009.
  • 5. ĆWINTAL M., DZIWULSKA-HUNEK A. Effect of electromagnetic stimulation of alfalfa seeds. International Agrophysics 27, 391, 2013.
  • 6. DZIWULSKA-HUNEK A., KRAWIEC M., SUJAK A. Laser light stimulation effects on Scorzonera hispanica L. seeds germination, filed emergence and photosynthetic pigments content. Journal of Horticultural Research 24 (1), 57, 2016.
  • 7. MATWIJCZUK A., KORNARZYŃSKI K., PIETRUSZEWSKI S. Effect of magnetic field on seed germination and seedling growth of sunflower. International Agrophysics 26, 271, 2012.
  • 8. POINAPEN D., BROWN D.C.W., BEEHARRY G.H. Seed orientation and magnetic field strength have more influence on tomato seed performance than relative humidity and duration of exposure to non-uniform static magnetic fields. Journal of Plant Physiology 170, 1251, 2013.
  • 9. SACAŁA E., DEMCZUK A., GRZYŚ E., PROSBA-BIAŁCZYK U., SZAJNER H. Impact of pre-sowing laser irradiation of seeds on sugar beet properties. International Agrophysics 26, 295, 2012.
  • 10. GOŁAWSKA S., ŁUKASIK I., GOŁAWSKI A., KAPUSTA I., JANDA B. Alfalfa (Medicago sativa L.) Apigenin Glycosides and Their Effect on the Pea Aphid (Acyrthosiphon pisum). Polish Journal of Environmental Studies 19 (5), 913, 2010.
  • 11. OFFICIAL JOURNAL OF THE EUROPEAN UNION. L 294, 11.11.2009, 52, 12, 2009.
  • 12. ANOWER M.R., MOTT I.W., PEEL M.D., WU Y. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiology and Biochemistry 71, 103, 2013.
  • 13. RECHULICZ J., OGNIK K., GRELA E.R. The Effect of Adding Protein-Xanthophyll Concentrate (PX) from Lucerne (Medicago sativa) on Growth Parameters and Redox Profile in Muscles of carp, Cyprinus carpio (L.) Turkish Journal of Fisheries and Aquatic Sciences 14, 697, 2014.
  • 14. SUJAK A., DZIWULSKA-HUNEK A., RESZCZYŃSKA E. Effect of Electromagnetic Stimulation on Selected Fabaceae Plants. Polish Journal of Environmental Studies 22 (3) 893, 2013.
  • 15. ZHANG W., GRIMI N., JAFFRIN M.Y., DING L. Leaf protein concentration of alfalfa juice by membrane technology. Journal of Membrane Science 489, 183, 2015.
  • 16. MOURADI M., BOUIZGAREN A., FARISSI M., LATRACH L., OADDOURY A., GHOULAM CH. Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Mediacgo sativa L.) – rhizobia symbiosis under drought stress. Scientia Horticulturae 213, 232, 2016.
  • 17. REKIK I., CHAABANE Z., MISSAOUI A., BOUKET A.CH., LUPTAKOVA L., ELLEUCH A., BELBAHRI L. Effects of untreated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor L. Moench), alfalfa (Medicago sativa L.) and fescue (Festuca arundinacea Schreb.). Journal of Hazardous Materials 326, 165, 2017.
  • 18. LI L., LI X.Y., ZENG F.J., LIN L.S. Chlorophyll a fluorescence of typical desert plant Alhagi sparsifolia Shap. at two light levels. Photosynthetica 54 (3), 351, 2016.
  • 19. NOVICHONOK E.V., NOVICHONOK A.O., KURBATOVA J.A., MARKOVSKAYA E.F. Use of the atLEAF+ chlorophyll meter for a non-destructive estimate of chlorophyll content. Photosynthetica 54 (1), 130, 2016.
  • 20. SÁNCHEZ C., BARANDA A.B., MARTÍNEZ D.E., MARAÑÓN I. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables. Food Chemistry 163, 37, 2014.
  • 21. ROTKIEWICZ D., KONOPKA I., TAŃSKA M. Carotenoid and chlorophyll pigments of vegetable oils and their functions (in Polish). Rośliny Oleiste XXIII, 561, 2002.
  • 22. VREDENBERG W., PRÁŠIL O. Modeling of Chlorophyll a Fluorescence Kinetics in Plant Cells: Derivation of a Descriptive Algorithm. Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystem A. Laisk, L. Nedbal and Govindjee (eds.). 125, 2009.
  • 23. CETNER M.D., DĄBROWSKI P., SAMBORSKA I.A., ŁUKASIK I., SOWCZYNA T., PIETKIEWICZ S., BĄBA W., KALAJI H.M. Application of chlorophyll fluorescence measurements in environmental studies (in Polish). Kosmos Problemy Nauk Biologicznych. Polskie Towarzystwo Przyrodników im. Kopernika 65 (2), 197, 2016.
  • 24. STARCK Z. Plant physiology: what was yesterday, what is today, and will happen tomorrow? (in Polish). Kosmos Problemy Nauk Biologicznych. Polskie Towarzystwo Przyrodników im. Kopernika. 63 (4), 569, 2014.
  • 25. DJUKIĆ M., DJUNISIJEVIĆ-BOJOVIĆ D., PAVLOVIĆ P., MITROVIĆ M., GRBIĆ M., SKOČAJIĆ D., LUKIĆ S. Influence of Fe Nutrition on Photosynthesis in Pb Treated Ailanthus altissima (Mill.) Swingle Seedlings. Polish Journal of Environmental Studies 23 (5), 1565, 2014.
  • 26. LAKOWICZ J.R. Principles of Fluorescence Spectroscopy. 3rd edition, Spronger Science+Business Media LLC, New York, USA 2006.
  • 27. BAKER N.R., ROSENQVIST E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55, 1607, 2004.
  • 28. HAZRATI S., TAHMASEBI-SARVESTAN Z., MODARRES-SANAVY S.A.M., MOKHTASSI-BIDGOLI A., NICOLA S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry 106, 141, 2016.
  • 29. HOUBORG R., MCCABE M.F., CESCATTI A., GITELSON A.A. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems. International Journal of Applied Earth Observation and Geoinformation 43, 160, 2015.
  • 30. SEVIK H., CETIN M. Effects of Water Stress on Seed Germination for Select Landscape Plants. Polish Journal of Environmental Studies 24 (2), 689, 2015.
  • 31. TURKYILMAZ A., SEVIK H., CETIN M., AHMAIDA SALEH E.A. Changes in Heavy Metal Accumulation Depending on Traffic Density in Some Landscape Plants. Polish Journal of Environmental Studies 27 (5), 2277, 2018.
  • 32. YIGIT N., SEVIK H., CETIN M., KAYA N. Chapter 3: Determination of the effect of drought stress on the seed germination in some plant species. Water Stress in Plants, Intech Open, Eds: Ismail Md. Mofizur Rahman, Zinnat Ara Begum, Hiroshi Hasegawa, 43, 2016.
  • 33. KRAVKAZ KUSCU I.S.., CETIN M., YIGIT N., SAVACI G., SEVIK H. Relationship between Enzyme Activity (Urease-Catalase) and Nutrient Element in Soil Use. Polish Journal of Environmental Studies 27 (5), 2107, 2018.
  • 34. SEVIK H., CETIN M., KAPUCU O., BARICAK B., CANTURK U. Effects of light on morphologic and stomatal characteristics of turkish fir needles (abies nordmanniana subsp. bornmulleriana mattf.), Fresenius Environmental Bulletin 26 (11), 6579, 2017.
  • 35. CETIN M., SEVIK H., YIGIT N., OZEL H.B., ARICAK B., VAROL T. The variable of leaf micromorphogical characters on grown in distinct climate conditions in some landscape plants. Fresenius Environmental Bulletin 27 (5), 3206, 2018.
  • 36. CETIN M., ZEREN I., SEVIK H., CAKIR C., AKPINAR H. A study on the determination of the natural park’s sustainable tourism potential. Environmental Monitoring and Assessment 190 (3), 167, 2018.
  • 37. CETIN M., SEVIK H., CANTURK U., CAKIR C. Evaluation of the recreational potential of Kutahya urban forest. Fresenius Environmental Bulletin 27 (5), 2629, 2018.
  • 38. GUNEY K., CETIN M., GUNEY K.B., MELEKOGLU A. The Effects of Some Hormone Applications on Lilium martagon L. Germination and Morpholgical Characters. Polish Journal of Environmental Studies 26 (6), 2533, 2017.
  • 39. CETIN M., SEVIK H., SAAT A. Indoor Air Quality: the Samples of Safranbolu Bulak Mencilis Cave. Fresenius Environmental Bulletin 26 (10), 5965, 2017.
  • 40. CETIN M. Chapter 27: Landscape Engineering, Protecting Soil, and Runoff Storm Water, InTech-Open Science-Open Minds, Online July 1st, 2013. Book: Advances in Landscape Architecture-Environmental Sciences 697, 2013.
  • 41. KOPER R., DYGDAŁA Z. System used in pre-sowing laser light biostimulation of seeds. Patent Office of Republic of Poland, no. 162598, WUPRP 12, 1111, 1993 [In Polish].
  • 42. MUSZYŃSKI S., GAGOŚ M., PIETRUSZEWSKI S. Short-Term Pre-Germination Exposure to ELF Magnetic Field Does Not Influence Seedling Growth in Durum Wheat (Triticum durum). Polish Journal of Environmental Studies 18 (6), 1065, 2009.
  • 43. LICHTENTHALER H.K., BUSCHMANN C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-Vis Spectroscopy. In: Current Protocols in Food Analytical Chemistry. Supplement 1, Wiley & Sons. Inc., USA:F4.3.1, 2001.
  • 44. SCHURR U., WALTER A., RASCHER U. Functional dynamic of plant growth and photosynthesis – from steady state to dynamics – from homogeneity to heterogeneity. Plant, Cell and Environment 29, 340, 2006.
  • 45. SOWINSKA M., HEISEL F., MIEHE J.A., LANG M., LICHTENTHALER H.K., TOMASINI F. Remote sensing of plants by streak camera lifetime measurements of the chlorophyll a emission. Journal Plant Physiology 148, 638, 1996.
  • 46. LEI R., JIANG H., HU F., YAN J., ZHU S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep, 36, 327, 2017.
  • 47. NOBLE E., KUMAR S., GÖRLITZ F.G., STAIN CH., DUNSBY CH., FRENCH M.W. In vivo label-free mapping of the efect of a photosystem II inhibiting herbicide in plants using chlorophyll fuorescence lifetime. Plant Methods 13 (48), 1, 2017.
  • 48. CETIN M. Change in Amount of chlorophyll in some interios ornamental plants. Kastamonu University Journal of Enigineering and Sciences 3 (1), 11, 2017.
  • 49. SINGH S.K., REDDY V.R., FLEISHER D.H., TIMLIN D.J. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. Photosynthetica 55 (3), 421, 2017.
  • 50. HUANG D., WU L., CHEN J.R., DONG L. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49 (4), 611, 2011.
  • 51. NOZUE H., OONO K., ICHIKAWA Y., TANIMURA S., SHIRAI K., SONOIKE K,. NOZUE M., HAYASHIDA N. Significance of structural variation in thylakoid membranes in maintaining functional photosystems during reproductive growth. Physiologia Plantarum 160, 111, 2017.
  • 52. MROCZEK-ZDYRSKA M., KORNARZYŃSKI K., PIETRUSZEWSKI S., GAGOŚ M. Stimulation with a 130-mT magnetic field improves growth and biochemical parameters in lupin (Lupinus angustifolius L.). Turkish Journal of Biology 40, 699, 2016.
  • 53. NOWAK A., WRÓBEL J. Effect of exogenic growth regulators on the content of assimilative pigments in leaves of three cultivars of common soybean (Glycine max L. Merr). Rośliny oleiste-Oilseed Crops XXX, 352, 2010 [In Polish].
  • 54. TAÏBI K., TAÏBI F., ABDERRAHIM L.A., ENNAJAH A., BELKHODJA M., MULET J.M. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany 105, 306, 2016.
  • 55. KHALID M., BILAL M., HASSANI D., IQBAL H.M.N, WANG H., HUANG D. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Botanical Studies 58, 1, 1, 2017.
  • 56. SKILES J.W. Plant response to microwaves at 2.45 GHz. Acta Astronautica 58, 258, 2006.
  • 57. ASGHAR T., JAMIL Y., IQBAL M., ZIA-UL-HAQ, ABBAS M. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. Journal of Photochemistry & Photobiology B:Biology 165, 283, 2016.
  • 58. GAO S., GAO J., ZHU X., SONG Y, LI Z., REN G., ZHOU X., KUAI B. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis. Molecular Plant 9, 1272, 2016.
  • 59. MA J., LV CH., XU M., HAO P., WANG Y., SHEN W., GAO Z., CHEN G., LV CH. Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation. Acta Physiol Plant 39 (46), 1, 2017.
  • 60. GAMEIRO C., UTKIN A.B., CARTAXANA P., MARQUES DA SILVA J., MATOS A.R. The use of laser induced chlorophyll fluorescence (LIF) as a fast and non-destructive method to investigate water deficit in Arabidopsis. Agricultural Water Management 164, 127, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c671b921-6c0d-439c-a651-2765b6952264
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.