PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 01 |

Tytuł artykułu

Effect of TIBA, fluridone and salicylic acid on somatic embryogenesis and endogenous hormone and sugar contents in the tree fern Cyathea delgadii Sternb.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Somatic embryogenesis (SE) in the tree fern Cyathea delgadii was first described in 2015 and since then has been used to exploration of this phenomenon in cryptogamic plants. To deepen the knowledge about the hormonal control of SE, stipe explants were cultured on media supplemented with hormone biosynthesis and transport inhibitors (HBTIs). In the presence of 30 µM 2,3,5-triiodobenzoic acid (TIBA), or 40 µM fluridone or 125 µM salicylic acid (SA), somatic embryo production was totally inhibited. The quantitative analysis of the changes in endogenous hormone and sugar contents was conducted every 2 days within 10-day-long initial culture. The results showed that the concentrations of endogenous indole-3-acetic acid (IAA), abscisic acid (ABA), cytokinins (CKs) and soluble sugars were strongly modified either by TIBA and fluridone. Under their influence, the contents of cytokinins such as c-Z, c-ZR, t-Z, t-ZR, KinR were reduced to barely detectable levels. Treatment with SA results in the changes in endogenous IAA and sugar contents. It also modifies the IAA/CKs ratio; however, excluding the first 2 days of culture, the concentrations of ABA and cytokinins were kept on the control level. All HBTIs significantly increased the kinetin (Kin) content. Our work sheds new light on the relationships between the biosynthetic inhibitors and phytohormones and sugars in the process of early SE. It can be helpful to study the role of hormones in acquisition of embryogenic competence.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

40

Numer

01

Opis fizyczny

Article 1 [11p.], fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02‑973 Warsaw, Poland
autor
  • Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30‑239 Krakow, Poland
autor
  • Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02‑973 Warsaw, Poland

Bibliografia

  • Ayil-Gutiérrez B, Galaz-Avalos RM, Peña-Cabrera E, Loyola-Vargas VM (2013) Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. Plant Signal Behav 8:1–10
  • Barciszewski J, Siboska G, Rattan SIS, Clark BFC (2000) Occurrence, biosynthesis and properties of kinetin (N 6 -furfuryladenine). Plant Growth Regul 32:257–265
  • Barciszewski J, Massino F, Clark BFC (2007) Kinetin—a multiactive molecule. Int J Biol Macromol 40:182–192. https://doi.org/10.1016/j.ijbiomac.2006.06.024
  • Belin C, Megies C, Hauserová E, Lopez-Molina L (2009) Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21:2253–2268. https://doi.org/10.1105/tpc.109.067702
  • Casson SA, Lindsey K (2006) The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol 142:526–541. https://doi.org/10.1104/pp.106.080895
  • Chen JT, Chang WC (2004) TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant Cell Tiss Org Cult 79:315–320. https://doi.org/10.1007/s11240-004-4613-5
  • Choi YE, Kim HS, Soh WY, Yang DC (1997) Developmental and structural aspects of somatic embryos formed on medium containing 2,3,5,-triiodobenzoic acid. Plant Cell Rep 16:738–744. https://doi.org/10.1007/s002990050312
  • Choi YE, Katsumi M, Sano H (2001) Triiodobenzoic acid, an auxin polar transport inhibitor, suppresses somatic embryo formation and postembryonic shoot/root development in Eleutherococcus senticosus. Plant Sci 160:1183–1190. https://doi.org/10.1016/S0168-9452(01)00357-0
  • Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29. https://doi.org/10.1016/S0021-9673(02)00024-9
  • Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A (2017) Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Sci 258:61–76. https://doi.org/10.1016/j.plantsci.2017.01.017
  • Farias-Soares FL, Steiner N, Schmidt ÉC, Pereira MLT, Rogge-Renner GD, Bouzon ZL, Floh ESI, Guerra MP (2014) The transition of proembryogenic masses to somatic embryos in Araucaria angustifolia (Bertol.) Kuntze is related to the endogenous contents of IAA, ABA and polyamines. Acta Physiol Plant 36:1853–1865. https://doi.org/10.1007/s11738-014-1560-6
  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264. https://doi.org/10.1093/jxb/erh048
  • Grzyb M, Kalandyk A, Waligórski P, Mikuła A (2017) The content of endogenous hormones an sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-017-1185-8
  • Hao L, Zhou L, Xu X, Cao J, Xi T (2006) The role of salicylic acid and carrot embryogenic callus extracts in somatic embryogenesis of naked oat (Avena nuda). Plant Cell Tiss Organ Cult 85:109–113. https://doi.org/10.1007/s11240-005-9052-4
  • Hosseini SS, Mashayekhi K, Alizadek M (2009) Ehtylene production and somatic embryogenesis of carrot explants as affected by salicylic acid treatments. Am J Agric Environ Sci 6:539–545
  • Hosseini SS, Mashayekhi K, Alizadeh M, Ebrahimi P (2011) Effect of salicylic acid on somatic embryogenesis and chlorogenic acid levels of carrot (Daucus carota cv. Nantes) explants. J Ornam Hortic Plants 1:105–113
  • Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K (2016) Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale. J Plant Physiol 202:1–9. https://doi.org/10.1016/j.jplph.2016.06.018
  • Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92:85–89. https://doi.org/10.1111/j.1399-3054.1994.tb06658.x
  • Janeczko A, Biesaga-Kościelniak J, Oklest’kova J, Filek M, Dziurka M, Szarek-Łukaszewska G, Kościelniak J (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311–321. https://doi.org/10.1111/j.1439-037X.2009.00413.x
  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. https://doi.org/10.1007/s10725-005-3478-x
  • Jiménez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257. https://doi.org/10.1016/S0168-9452(00)00382-4
  • Kępczyńska E, Zielińska S (2013) The role of endogenous ethylene in carbohydrate metabolism of Medicago sativa L. somatic embryos in relation to their regenerative ability. J Plant Growth Regul 32:191–199. https://doi.org/10.1007/s00344-012-9288-2
  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645. https://doi.org/10.1007/s00425-005-0114-y
  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. https://doi.org/10.1016/j.pbi.2004.03.014
  • Kumar V, Ramakrishna A, Ravishankar GA (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. Vitr Cell Dev Biol - Plant 43:602–607. https://doi.org/10.1007/s11627-007-9067-0
  • Laublin G, Saini HS, Cappadocia M (1991) In vitro plant regeneration via somatic embryogenesis from root culture of some rhizomatous irises. Plant Cell Tiss Organ Cult 27:15–21. https://doi.org/10.1007/BF00048200
  • Lee S-T, Huang W-L (2013) Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus. Bot Stud 54:5 http://www.as-botanicalstudies.com/content/54/1/5
  • Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630
  • LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331. https://doi.org/10.1007/BF00305823
  • Luo J, Jiang S, Pan L (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H₂O₂ production and H₂O₂-metabolizing enzyme activities. Plant Sci 161:125–132. https://doi.org/10.1016/S0168-9452(01)00401-0
  • Malabadi RB, da Silva TJA, Nataraja K (2008) Salicylic acid induces somatic embryogenesis from mature trees of Pinus roxburghii (Chir pine) using TCL technology. Tree For Sci Biotechnol 2:34–39
  • Mikuła A, Pożoga M, Grzyb M, Rybczyński JJ (2015a) An unique system of somatic embryogenesis in the tree fern Cyathea delgadii Sternb.: the importance of explant type, and physical and chemical factors. Plant Cell Tiss Organ Cult 123:467–478. https://doi.org/10.1007/s11240-015-0850-z
  • Mikuła A, Pożoga M, Tomiczak K, Rybczyński JJ (2015b) Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34:783–794. https://doi.org/10.1007/s00299-015-1741-9
  • Mulgund GS, Meti NT, Malabadi RB, Nataraja K, Kumar SV (2012) Role of salicylic acid on conifer somatic embryogenesis. Res Biotechnol 3:57–61
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 171–182. https://doi.org/10.1007/978-3-319-33705-0_10
  • Nickle TC, Yeung EC (1994) Further evidence of a role for abscisic acid in conversion of somatic embryos of Daucus carota. In Vitro Cell Dev Biol Plant 30:96–103. https://doi.org/10.1007/BF02632136
  • Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–403
  • Nowak K, Wójcikowska B, Gaj MD (2015) ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241:967–985. https://doi.org/10.1007/s00425-014-2225-9
  • Olsen A, Siboska GE, Clark BF, Rattan SIS (1999) N(6)-furfuryladenine, kinetin, protects against fenton reaction-mediated oxidative damage to DNA. Biochem Biophys Res Commun 265:499–502. https://doi.org/10.1006/bbrc.1999.1669
  • Pěnčík A, Turečková V, Paulišić S, Rolčík J, Strnad M, Mihaljević S (2015) Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell Tiss Organ Cult 122:89–100. https://doi.org/10.1007/s11240-015-0752-0
  • Popova L (1995) Effect of fluridone on plant development and stress-induced accumulation in Vicia faba L. plants. Bulg J Plant Physiol 21:42–50
  • Quiroz-Figueroa F, Méndez-Zeel M, Larqué-Saavedra A, Loyola-Vargas VM (2001) Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep 20:679–684. https://doi.org/10.1007/s002990100386
  • Rajasekaran K, Vine J, Mullins MG (1982) Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154:139–144. https://doi.org/10.1007/BF00387907
  • Rajasekaran K, Hein MB, Vasil IK (1987) Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum.: effects in vivo and in vitro of glyphosate, fluridone, and paclobutrazol. Plant Physiol 84:47–51. https://doi.org/10.1104/pp.84.1.47
  • Ramarosandratana AV, Van Staden J (2004) Effects of auxins and 2,3,5-triiodobenzoic acid on somatic embryo initiation from Norway spruce zygotic embryos (Picea abies). Plant Cell Tiss Org Cult 79:105–107
  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H₂O₂ production, oxidative stress, and H₂O₂-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H₂O₂. Plant Physiol 115:137–149. https://doi.org/10.1104/pp.115.1.137
  • Romani RJ, Hess BM, Leslie CA (1989) Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. J Plant Growth Regul 8:63–69. https://doi.org/10.1007/BF02024927
  • Ruduś I, Weiler E, Kępczynska E (2009) Do stress-related phytohormones, abscisic acid and jasmonic acid play a role in the regulation of Medicago sativa L. somatic embryogenesis? Plant Growth Regul 59:159–169. https://doi.org/10.1007/s10725-009-9399-3
  • Sáenz L, Azpeitia A, Oropeza C, Jones LH, Fuchsova K, Spichal L, Strnad M (2010) Endogenous cytokinins in Cocos nucifera L. in vitro cultures obtained from plumular explants. Plant Cell Rep 29:1227–1234. https://doi.org/10.1007/s00299-010-0906-9
  • Sakhanokho HF, Rajasekaran K, Kelley RY (2009) Somatic embryogenesis in Hedychium bousigonianum. Hortic Sci 44:1487–1490
  • Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Diff 21:53–62
  • Senger S, Mock H-P, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120. https://doi.org/10.1007/s002990000290
  • Somleva MM, Kapchina V, Alexieva V, Golovinsky E (1995) Anticytokinin effects on in vitro response of embryogenic and nonembryogenic genotypes of Dactylis glomerata L. Plant Growth Regul 16:109–112. https://doi.org/10.1007/BF00029530
  • Štefančič M, Štampar F, Veberič R, Osterc G (2007) The levels of IAA, IAAsp and some phenolics in cherry rootstock “GiSelA 5” leafy cuttings pretreated with IAA and IBA. Sci Hortic (Amsterdam) 112:399–405. https://doi.org/10.1016/j.scienta.2007.01.004
  • Su YH, Zhang XS (2009) Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 4:574–576. https://doi.org/10.4161/psb.4.7.8730
  • Su YH, Su YX, Liu YG, Zhang XS (2013) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regul 69:167–176. https://doi.org/10.1007/s10725-012-9759-2
  • Tokuji Y, Kuriyama K (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J Plant Physiol 160:133–141. https://doi.org/10.1078/0176-1617-00892
  • Vondráková Z, Krajňáková J, Fischerová L, Vágner M, Eliášová K (2016) Physiology and role of plant growth regulators in somatic embryogenesis. In: Park Y-S, Bonga J, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, pp 123–169
  • Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Review: role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40:2837–2849. https://doi.org/10.1007/s11033-012-2299-z
  • Żur I, Dubas E, Krzewska M, Waligórski P, Dziurka M, Janowiak F (2015) Hormonal requirements for effective induction of microspore embryogenesis in triticale (×Triticosecale Wittm.) anther cultures. Plant Cell Rep 34:47–62. https://doi.org/10.1007/s00299-014-1686-4

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c63dee5b-ec33-4e51-87eb-ea95ff27eddc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.