PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Experimental study of factors that affect iron and manganese removal in slow sand filters and identification of responsible microbial species

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents the results of DNA-based molecular analyses of the microbial community responsible for biological iron (Fe) and manganese (Mn) removal in slow sand filters (SSF). A lab-scale SSF was operated in 55-day sets under different operating conditions in order to evaluate long-term performance of the filter. The concentrations of Fe and Mn in synthetic feed water were increased from 1 mg/L to 2 mg/L at two different filtration rates (0.1 and 0.3 m/h). Daily samples were taken from influent and effluent for turbidity and Fe-Mn concentration measurements. 90-95% removal efficiencies were achieved with very low effluent concentrations. PCR-DGGE analyses were performed on samples, and Gallionella, Leptothrix, Crenothrix, and Hyphomicrobium were identified as the main microbial strains responsible for iron and manganese oxidation in SSF. Results also revealed that microbial activity was the main mechanism for Fe and Mn removal in the early stages of operation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1453-1465,fig.,ref.

Twórcy

autor
  • Environmental Engineering Department, Faculty of Civil Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey

Bibliografia

  • 1. Cakmakci M., Kinaci C., Bayramoglu M., Yildirim Y. A modeling approach for iron concentration in sand filtration effluent using adaptive neuro-fuzzy model. Expert Syst. Appl. 37, 1369, 2010.
  • 2. Molinari R., Argurio P., Romeo L. Studies on interactions between membranes (RO and NF) and pollutants (SiO2, NO3–, Mn++ and humic acid) in water. Desalination 138, 271, 2001.
  • 3. Lastra A., Daniel G., Javier R., José Luis F., Susana L., José R. Removal of metal complexes by nanofiltration in a TCF pulp mill: technical and economic feasibility. J. Membrane Sci. 242, (1-2), 97, 2004.
  • 4. Noubactep C. Metallic iron for safe drinking water worldwide. Chem. Eng. J. 165, 740, 2010.
  • 5. Lee E., Oki L.R. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure. Water Res. 47, 5121, 2013.
  • 6. Bourne D.G., Blakeley R.L., Riddles P., Jones G.J. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Res.40, 1294, 2006.
  • 7. Campos L.C., Su M.F.J., Graham N.J.D., Smith S.R. Biomass development in slow sand filters. Water Res. 36, 4543, 2002.
  • 8. Langenbach K., Kuschk P., Horn H., Kastner M. Modeling of slow sand filtration for disinfection of secondary clarifier effluent. Water Res. 44, 159, 2010.
  • 9. Bauer R., Dizer H., Graeber I., Rosenwinkel K-H., Lopez -Pila J.M. Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration. Water Res. 45, 439, 2011.
  • 10. Tech Brief. Slow Sand Filtration, A National Drinking Water Clearing House Fact Sheet, 2000; 1-4. Available online: http://www.nesc.wvu.edu/pdf/dw/publications/ontap/2009_tb/slow_sand_filtration_dwfsom40.pdf. Accessed on 14 January 2016.
  • 11. Zheng X., Ernst M., Jekel M. Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration. Water Res. 44, 3203, 2010.
  • 12. EPA. Storm Water Technology Fact Sheet: Sand Filters, United States Environmental Protection Agency, Office of Water, Washington, D.C. EPA 832-F-99-007, September 1999. Available online: http://nepis.epa.gov/Exe/ZyPDF. cgi/200044AG.PDF?Dockey=200044AG.PDF. Accessed on 14 January 2016.
  • 13. Schijven J.F., van den Berg H.H.J.L., Colin M., Dullemont Y., Hijnen W.A.M., Magic -Knezev A., Oorthuizen W.A., Wubbels G. A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions. Water Res. 47, 2592, 2013.
  • 14. Adin A. Slow granular filtration for water reuse. Wa. Sci. Technol. 3, 123, 2003.
  • 15. Corral A.F., Yenal U., Strickle R., Yan D., Holler E., Hill C., Ela W.P., Arnold R.G. Comparison of slow sand filtration and microfiltration as pretreatments for inland desalination via reverse osmosis. Desalination 334, 1, 2014.
  • 16. Visscher J.T., Paramasivan R., Raman A., Heijnen H.A. Slow Sand Filtration for community Water Supply planning, design, construction, operation and maintenance, Technical paper series no.24; Publisher: International Reference Centre for Community Water Supply and Sanitation, Netherland, 8, 1987.
  • 17. Gottinger M.A., McMartin D.W., Price D., Hanson B. The effectiveness of slow sand filters to treat Canadian rural prairie water. Can. J. Civil Eng. 38, 455, 2011.
  • 18. Petitjean A., Forquet N., Wanko A., Laurent J., Molle P., Mose ´ R., Sadowski A. Modelling aerobic biodegradation in vertical flow sand filters: Impact of operational considerations on oxygen transfer and bacterial activity. Water Res. 46, 2270, 2012.
  • 19. Mauclaire L., Schürmann A., Thullner M., Gammeter S., Zeyer J. Sand filtration in a water treatment plant: biological parameters responsible for clogging. J. Water Supply Res. T. 53, 93, 2004.
  • 20. Li X., Chu Z., Liu Y., Zhu M., Yang L., Zhang J. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China. Bioresource Technol. 147, 234, 2013.
  • 21. Sakurai K., Tazaki K., Yamaguchi K. Identification of bacteria in an iron-oxidation biofilm at Shibayama lagoon, Ishikawa, Japan. Published Only in Database (2006). Available online: http://www.ncbi.nlm.nih.gov/nuccore/AB252929. Accessed on 14 January 2016.
  • 22. Lin C.F., Larsen E.I., Nothdurft L.D., Smith J.J. Neutrophilic, microaerophilic Fe(II)-oxidizing bacteria are ubiquitous in aquatic habitats of a subtropical Australian coastal catchment. Geomicrobiol. J. 29, 76, 2012.
  • 23. Mitsunobu S., Makita H., Kikuchi S. Biogenic iron oxyhydroxides characterized by directly coupled phylogenetic and chemical speciation. Available online: http://www.ncbi.nlm.nih.gov/nuccore/AB670152. Accessed on 14 January 2016.
  • 24. Katsoyiannis I.A., Zouboulis A.I. Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Res. 38, 1922, 2004.
  • 25. Tekerlekopoulou A.G., Vasiliadou I.A., Vayenas D.V. Biological manganese removal from potable water using trickling filters. Biochem. Eng. J. 38, 292, 2008.
  • 26. Ma G.X., Pei H.Y., Ji Y. Study on Microbial Community in Drinking Water Sludge by PCR-DGGE. Available online: http://www.ncbi.nlm.nih.gov/nuccore/JN936833. Accessed on 14 January 2016.
  • 27. Dai Y., Zhang J., Xie S. Bacterial communities in drinking water distribution systems. Available online: http://www.ncbi.nlm.nih.gov/nuccore/KF515099. Accessed on 14 January 2016.
  • 28. Fleming E.J., Langdon A.E., Martinez -Garcia M., Stepanauskas R., Poulton N.J., Masland E.D., Emerson D. What's new is old: resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH. PLOS ONE 6, e17769, 2011.
  • 29. Corstjens P.L.A.M., de Vrind J.P.M., Goosen T., de Vrind-de Jong E.W. Identification and Molecular Analysis of the Leptothrix discophora SS-1 mofA Gene, a Gene Putatively Encoding a Manganese Oxidizing Protein with Copper Domains. Geomicrobiol. J. 14, 91, 1997.
  • 30. Blothe M., Roden E.E. Microbial iron redox cycling in a circumneutral-pH groundwater seep. Appl. Environ. Microbiol. 75, 468, 2009.
  • 31. Aizenberg-Gershtein Y., Vaizel-Ohayon D., Halpern M. Structure of bacterial communities in diverse freshwater habitats. Can. J. Microbiol. 58, 326, 2012.
  • 32. Kwon S., Moon E., Kim T.S., Hong S., Park H.D. Pyrosequencing demonstrated complex microbial communities in a membrane filtration system for a drinking water treatment plant. Microbes Environ. 26, 149, 2011.
  • 33. Islam A.A., Tobiaso J.E. Release of manganese from groundwater treatment filter media. http://www.ncbi.nlm.nih.gov/nuccore/JQ288616. Accessed on 14 January 2016.
  • 34. Johnson K.W., McDonald W., Carmichael M.J., Rose N., Pitchford J., Windelspecht M., Karatan E., Brauer S.L. Increased abundance of Gallionella spp., Leptothrix spp. and total bacteria in response to enhanced Mn and Fe concentrations in a disturbed southern Appalachian high elevation wetland. Available online: http://www.ncbi.nlm.nih.gov/nuccore/ GU572372. Accessed on 14 January 2016.
  • 35. Gulay A., Tatari K., Musovic S., Mateiu R.V., Albrechtsen H.J., Smets B.F. Internal porosity of mineral coating supports microbial activity in rapid sand filters for groundwater treatment. Appl. Environ. Microbiol. 80, 7010, 2014.
  • 36. Li L., Yang W.H., Zhang Z. Diversity and composition of bacteria related to manganese oxidization through a soil profile using culture-dependent and culture-independent methods. Available online: http://www.ncbi.nlm.nih.gov/nuccore/HQ877794. Accessed on 14 January 2016.
  • 37. Nousiainen A.O., Bjorklof K., Sagarkar S., Nielsen J.L., Kapley A., Jorgensen K.S. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Appl. Microbiol. Biotechnol. 99, 10249, 2015.
  • 38. Douterelo I., Sharpe R., Boxall J. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration. J. Appl. Microbiol. 117, 286, 2014.
  • 39. Revetta R.P., Gomez-Alvarez V., Gerke T.L., Curioso C., Santo Domingo J.W., Ashbolt N.J. Establishment and early succession of bacterial communities in monochloramine-treated drinking water biofilms. FEMS Microbiol. Ecol. 86, 404, 2013

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c5d946ad-e0ea-42e6-bac0-2f3d34d60f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.