PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Evaluating hexaconazole leaching in laboratory and field experiments: effects of application rate, soil type, and simulated rainfall

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study we investigated the leaching behaviour of hexaconazole fungicide in two soil packed columns, namely disturbed and undisturbed soil columns in field conditions. The effects of simulated rainfall (100 mL, 200 mL, and 400 mL) and application rate at recommended dosage (4.5 g a.i/palm tree) and double recommended dosage (9.0 g a.i/palm tree) were also studied. The residual of hexaconazole in the soil column was observed to be significantly different between the volumes of simulated rainfall application and decreased with increased soil depth. The highest concentrations were detected at the soil surface (0-10 cm), where 53-63% of the hexaconazole remained after applications. No significant difference was found between the disturbed and undisturbed soil packed column when treated with the recommended and double recommended dosages of hexaconazole. In order to understand the hexaconazole leaching pattern, a field study experiment with the same soil properties and application rate was conducted. The results showed that hexaconazole was distributed downward through the preferential flow and soil crack in the sandy loam soil profile. The groundwater ubiquity scores (GUS) Index for hexaconazole calculated in Malaysian soil was 4.61, indicating that hexaconazole has a high risk of contaminating groundwater resources.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2163-2170,fig.

Twórcy

autor
  • Analytical and Quality Development Unit, Product Development and Advisory Services Division (PDAS), Malaysian Palm Oil Board (MPOB), Selangor, Malaysia
autor
  • Analytical and Quality Development Unit, Product Development and Advisory Services Division (PDAS), Malaysian Palm Oil Board (MPOB), Selangor, Malaysia
autor
  • School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Selangor, Malaysia
autor
  • Ganoderma and Diseases Research for Oil Palm Unit (GanoDROP), Biological Research Division, Malaysian Palm Oil Board (MPOB), Selangor, Malaysia

Bibliografia

  • 1. LAM C., CHIU S. Hexaconazole (Anvil 5SC), a costeffective fungicide for controlling white root disease in immature rubber. The Planter, 69, 465, 1993.
  • 2. LAM C., LIM T. Efficacy of hexaconazole for the control of white rust on chrysanthemum and powdery mildew on roses. International Journal of Pest Management, 39, 156, 1993.
  • 3. IDRIS A.S., ISMAIL S., ARIFFIN D., AHMAD H. Control of Ganoderma-infected palm-development of pressure injection and field applications. MPOB TT No. 131, 2002.
  • 4. BROMILOW R.H., EVANS A.A., NICHOLLS P.H. Factors affecting degradation rates of five triazole fungicides in two soil types: 2. Field studies. Pest. Sci., 55, 1135, 1999.
  • 5. BROMILOW R.H., EVANS A.A., NICHOLLS P.H. Factors affecting degradation rates of five triazole fungicides in two soil types: 1. Laboratory incubations. Pest. Sci., 55, 1129, 1999.
  • 6. ZHANG Z., JIANG W., JIAN Q., SONG W., ZHENG Z., WANG D., LIU X. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. Food Chemistry, 168, 396, 2015.
  • 7. MAZNAH Z., HALIMAH M., ISMAIL S., IDRIS A.S. Dissipation of the fungicide hexaconazole in oil palm plantation. Environ. Sci. Pollut. Res., 22, 19648, 2015.
  • 8. POTTER T.L., STRICKLAND T.C., JOO H., CULBREATH A.K. Accelerated soil dissipation of tebuconazole following multiple applications to peanut. J. Environ. Qual., 34, 1205, 2005.
  • 9. WANG K., WU J., ZHANG H. Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotox. Environ. Safe., 86, 111, 2012.
  • 10. KÖRDEL W., KLEIN M. Prediction of leaching and groundwater contamination by pesticides. Pure Appl. Chem., 78, 1081, 2006.
  • 11. SINGH N. Mobility of four triazole fungicides in two Indian soils. Pest. Manag. Sci., 61, 191, 2005.
  • 12. FENOLL J., RUIZ E., FLORES P., HELLIN P., NAVARRO S. Leaching potential of several insecticides and fungicides through disturbed clay-loam soil columns. Int. J. Environ. An. Ch., 90, 276, 2010.
  • 13. SHARMA K., SHARMA R., JOSEPH P., SAHA S., WALIA S. Sorption and leaching behavior of hexaconazole as influenced by soil properties. Toxicol. Environ. Chem., 95, 1090, 2013.
  • 14. OECD. TG 312: Leaching in soil columns. Available online: http://archive.epa.gov/scipoly/sap/meetings/web/pdf/312_soil_column_leaching.pdf. (accessed on 19/3/2017)
  • 15. MUHAMAD H., MAZNAH Z., ISMAIL B.S., IDRIS A.S. Determination of hexaconazole in field samples of an oil palm plantation. Drug Test. Anal., 4, 112, 2012.
  • 16. IDRIS A.S., ISMAIL S., ARIFFIN D., AHMAD H. Prolonging the productive life of ganoderma-infected palms with hexaconazole. MPOB TT No. 214, 2004.
  • 17. JHALA A.J., RAMIREZ A.H., SINGH, M. Leaching of indaziflam applied at two rates under different rainfall situations in Florida Candler soil. Bull. Environ. Contam. Toxicol. 88 (3), 326, 2012.
  • 18. JHALA A.J., SINGH M. Leaching of indaziflam compared with residual herbicides commonly used in Florida citrus. Weed Technol. 26 (3), 602, 2012.
  • 19. GONZÁLEZ-DELGADO A.M., SHUKLA M.K., ASHIGH J., PERKINS, R. Effect of application rate and irrigation on the movement and dissipation of indaziflam. J. Environ. Sci. 51, 111, 2017.
  • 20. ISMAIL B.S., OOI, K.E. Adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem in Malaysia. Journal of Environmental Biology, 33 (3), 573, 2012.
  • 21. ISMAIL B.S., CHOO L.Y., SALMIJAH S., HALIMAH M., TAYEB M.A. Adsorption, desorption and mobility of cyfluthrin in three Malaysian tropical soils of different textures. Journal of Environmental Biology, 36 (5), 1105, 2015.
  • 22. ASLAM S., IQBAL A., DESCHAMPS M., RECOUS S., GARNIER, P. BENOIT P. Effect of rainfall regimes and mulch decomposition on the dissipation and leaching of S-metolachlor and glyphosate: a soil column experiment. Pest Manag. Sci. 71 (2), 278, 2015.
  • 23. RASMUSSEN S.B., ABRAHAMSEN P., NIELSEN M.H., HOLM P.E., HANSEN S. Effects of single rainfall events on leaching of glyphosate and bentazone on two different soil types, using the DAISY model. Vadose Zone Journal, 14 (11), 2015.
  • 24. MAZNAH Z., HALIMAH M., ISMAIL B.S., IDRIS A.S. Adsorption-desorption of hexaconazole in soils with respect to soil properties, temperature, and pH. Turkish Journal of Agriculture - Food Science and Technology, 4 (6), 493, 2016.
  • 25. VERHEYE, W. Growth and Production of Oil Palm. In: VERHEYE, W. (ed.), Land Use, Land Cover and Soil Sciences. Encyclopedia of Life Support Systems (EOLSS), UNESCO-EOLSS Publishers, Oxford, UK. http://www.eolss.net. 2010.
  • 26. LIU M., YUSOFF M.M., MAKKY E.A., SALIHON J. Bacterial isolation from palm oil plantation soil for biodiesel production: isolation and molecular identification as inferred by 16s RNA. J Biotechnol Biomater, 4, 165, 2014.
  • 27. CHAI L.K., MOHD-TAHIR N., HANSEN, S., HANSEN H.C.B. Dissipation and leaching of acephate, chlorpyrifos, and their main metabolites in field soils of Malaysia J. Environ. Qual. 38 (3), 1160, 2009.
  • 28. KJAER J., VIBEKE E., JACOBESEN O.H., HANSEN N., DE JONGE L.W., OLSEN P. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils. Chemosphere 84, 471, 2011.
  • 29. GJETTERMANN B., PETERSEN C.T., KOCH C.B., SPLIID N.H., GRØN C., BAUN D.L., STYCZEN M. Particle-facilitated pesticide leaching from differently structured soil monoliths. J. Environ. Qual. 38 (6), 2382, 2009.
  • 30. EDWFARDS P.G., MURPHY T.M., LYDY, M.J. Fate and transport of agriculturally applied fungicidal compounds, azoxystrobin and propiconazole. Chemosphere, 146, 450, 2016.
  • 31. GUSTAFSON D.I. Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ. Toxicol. Chem., 8, 339, 1989.
  • 32. PFEIFFER M. Groundwater Ubiquity Score (GUS). Available online: http://ptrpest.com/pdf/groundwater_ubiquity.pdf. (accessed on 15/3/2017).
  • 33. FENOLL J., RUIZ E., FLORES P., VELA N., HELLÍN P., NAVARRO S. Use of farming and agro-industrial wastes as versatile barriers in reducing pesticide leaching through soil columns. J. Hazard. Mater., 187, 206, 2011.
  • 34. KYUNG K.-S., LEE B.-M., IHM Y.-B., LEE Y.-D., HAN S.-S., CHOI J.-H., KIM J.-H., RYU G.-H., LEE J.- K. Adsorption and leaching characteristics of fungicide hexaconazole. The Korean Journal of Pesticide Science, 8, 46, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c59ab8e4-5401-4271-934d-627ba6e94592
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.