PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 71 | 1 |

Tytuł artykułu

Comparison of the response of seedlings of common buckwheat (Fagopyrum esculentum Moench) to glyphosate applied to the shoot or to the root zone

Treść / Zawartość

Warianty tytułu

PL
Porównanie odpowiedzi siewek gryki zwyczajnej (Fagopyrum esculentum Moench) na glifosat stosowany na pędy lub do strefy korzeniowej

Języki publikacji

EN

Abstrakty

EN
We examined the response of common buckwheat (Fagopyrum esculentum Moench) seedlings, as a nontarget plant, to various doses of glyphosate applied to the root zone or to the shoots. Glyphosate was used at 0.1, 0.5, and 1.0 mM concentrations. The study was conducted on seedlings grown in hydroponic cultures under controlled growth conditions. Primary root and shoot growth, anthocyanin and photosynthetic pigment contents were measured to assess the effects of exposure to glyphosate. Glyphosate applied to shoots had a considerably higher impact on the growth of primary roots and shoots of seedlings. Low glyphosate concentrations produced an increase in anthocyanin content of hypocotyls, regardless of the mode of its application. Increasing the concentration of glyphosate applied to the root zone resulted in a gradual increase in anthocyanin content in cotyledons. Our overall results show that in hydroponically grown common buckwheat seedlings, glyphosate is less phytotoxic when applied to the root zone than when applied to the shoot. Low doses of glyphosate applied to the root zone stimulate root and shoot growth and increase the anthocyanin levels in cotyledons. The phytotoxicity of glyphosate was decreased in the absence of mineral nutrients in the root zone of buckwheat seedlings.
PL
Wykonano badania reakcji siewek gryki zwyczajnej (Fagopyrum esculentum Moench), na glifosat, związek chemiczny z grupy fosfonianów. Preparat zastosowano w stężeniach 0,1, 0,5 i 1,0 mM na organy nadziemne lub do strefy korzeniowej. Badania przeprowadzono na roślinach uprawia- nych hydroponicznie w kontrolowanych warunkach światła i temperatury. Aby ocenić wpływ ekspozycji na glifosat wykonano pomiary wzrostu korzenia głównego i części nadziemnych oraz zawartości antocyjanów i barwników fotosyntetycznych. Glifosat stosowany na organy nadziemne miał znacznie większy wpływ hamujący na wzrost tych organów i korzenia głównego siewek gryki, niż użyty dokorzeniowo. Niskie stężenie glifosatu (0,1 mM), niezależnie od trybu jego użycia, powodowało zwiększanie zawartości antocyjanów w hipokotylu siewek gryki zwyczajnej. Podwyższanie stężenia glifosatu w strefie korzeniowej powodowało stopniowy wzrost zawartości antocyjanów w liścieniach siewek. Uzyskane wyniki ukazują, że w uprawie hydroponicznej siewek gryki zwyczajnej glifosat jest mniej fitotoksyczny po użyciu do strefy korzenia, niż po zastosowaniu na organy nadziemne. Niskie dawki glifosatu (0,1 mM) w strefie korzeniowej stymulowały wzrost korzenia głównego i części nadziemnych siewek oraz zwiększały poziom antocyjanów w liścieniach. Fitotoksyczność glifosatu ulegała obniżeniu przy braku składników mineralnych w pożywce.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

71

Numer

1

Opis fizyczny

Article: 1730 [9 p.], fig.,ref.

Twórcy

autor
  • Department of Biology, Chair of Botany and Plant Physiology, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
autor
  • Department of Biology, Chair of Botany and Plant Physiology, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
autor
  • Department of Biology, Chair of Botany and Plant Physiology, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
autor
  • Department of Biology, Chair of Botany and Plant Physiology, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
autor
  • Department of Biology, Chair of Botany and Plant Physiology, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland

Bibliografia

  • Duke SO, Powles SB. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci. 2008;64:319–325. https://doi.org/10.1002/ps.1518
  • Laitinen P, Rämö S, Siimes K. Glyphosate translocation from plants to soil – does this constitute a significant proportion of residues in soil? Plant Soil. 2007;300:51–60. https://doi.org/10.1007/s11104-007-9387-1
  • Helander M, Saloniemi I, Saikkonen K. Glyphosate in northern ecosystems. Trends Plant Sci. 2012;17:569–574. https://doi.org/10.1016/j.tplants.2012.05.008
  • Székács A, Darvas B. Forty years with glyphosate. In: Hasaneen MNAEG, editor. Herbicides – properties, synthesis and control of weeds. Rijeka: InTech; 2012. p. 247–284. https://doi.org/10.5772/32491
  • Amrhein N, Deus B, Gehrke P, Steinrücken HC. The site of the inhibition of the shikimate pathway by glyphosate II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980;66:830–834. https://doi.org/10.1104/pp.66.5.830
  • Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J Agric Food Chem. 2012;60:10375–10397. https://doi.org/10.1021/jf302436u
  • Zobiole LH, Kremer RJ, Oliveira RS, Constantin J. Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.). Pestic Biochem Physiol. 2011;99:53–60. https://doi.org/10.1016/j.pestbp.2010.10.005
  • Huang J, Silva EN, Shen Z, Jiang B, Lu H. Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physicochemical properties of cogongrass (Imperata cylindrical L.). Plant Omics. 2012;5:177–183.
  • Franz JE, Mao MK, Sikorski JA. Glyphosate: a unique global herbicide. Washington, DC: American Chemical Society; 1997. (ACS Monograph; vol 189).
  • Reddy KN, Rimando AM, Duke SO, Nandula VK. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate. J Agric Food Chem. 2008;56:2125–2130. https://doi.org/10.1021/jf072954f
  • Alister C, Kogan M, Pino I. Differential phytotoxicity of glyphosate in maize seedlings following applications to roots or shoot. Weed Res. 2005;45:27–32. https://doi.org/10.1111/j.1365-3180.2004.00424.x
  • Petersen IL, Hansen HC, Ravn HW, Sørensen JC, Sørensen H. Metabolic effects in rapeseed (Brassica napus L.) seedlings after root exposure to glyphosate. Pestic Biochem Physiol. 2007;89:220–229. https://doi.org/10.1016/j.pestbp.2007.06.009
  • Wagner R, Kogan M, Parada AM. Phytotoxic activity of root absorbed glyphosate in corn seedlings (Zea mays L.). Weed Biol Manag. 2003;3:228–232. https://doi.org/10.1046/j.1444-6162.2003.00110.x
  • Eker S, Ozturk L, Yazici A, Erenoglu B, Römheld V, Cakmak I. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J Agric Food Chem. 2006;54:10019–10025. https://doi.org/10.1021/jf0625196
  • Cakmak I, Yazici A, Tutus Y, Ozturk L. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur J Agron. 2009;31:114–119. https://doi.org/10.1016/j.eja.2009.07.001
  • White AL, Boutin C. Herbicidal effects on nontarget vegetation: investigating the limitations of current pesticide registration guidelines. Environ Toxicol Chem. 2007;26:2634–2643. https://doi.org/10.1897/06-553.1
  • Vereecken H. Mobility and leaching of glyphosate: a review. Pest Manag Sci. 2005;61:1139–1151. https://doi.org/10.1002/ps.1122
  • Piotrowicz-Cieślak AI, Adomas B, Michalczyk DJ. Different glyphosate phytotoxicity of seeds and seedlings of selected plant species. Pol J Environ Stud. 2010;19:123–129.
  • Holländer H, Amrhein N. The site of the inhibition of the shikimate pathway by glyphosate I. Inhibition by glyphosate of phenylpropanoid synthesis in buckwheat (Fagopyrum esculentum Moench). Plant Physiol. 1980;66:823–829. https://doi.org/10.1104/pp.66.5.823
  • Mancinelli AL. Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreatments. Plant Physiol. 1984;75:447–453. https://doi.org/10.1104/pp.75.2.447
  • Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int. 2005;88(5):1269–1278.
  • Lichtenthaler HK, Wellburn AR. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem Soc Trans. 1985;11:591–592. https://doi.org/10.1042/bst0110591
  • Cedergreen N. Is the growth stimulation by low doses of glyphosate sustained over time? Environ Pollut. 2008;156:1099–1104. https://doi.org/10.1016/j.envpol.2008.04.016
  • Velini ED, Alves E, Godoy MC, Meschede DK, Souza RT, Duke SO. Glyphosate applied at low doses can stimulate plant growth. Pest Manag Sci. 2008;64:489–496. https://doi.org/10.1002/ps.1562
  • Belz RG, Duke SO. Herbicides and plant hormesis. Pest Manag Sci. 2014;70:698–707. https://doi.org/10.1002/ps.3726
  • Cornish PS. Glyphosate residues in a sandy soil affect tomato transplants. Aust J Exp Agric. 1992;32:395–399. https://doi.org/10.1071/EA9920395
  • Lejczak B, Boduszek B, Kafarski P, Forlani G, Wojtasek H, Wieczorek P. Mode of action of herbicidal derivatives of aminomethylenebisphosphonic acid. I. Physiologic activity and inhibition of anthocyanin biosynthesis. J Plant Growth Regul. 1996;15:109–113. https://doi.org/10.1007/BF00198924
  • Krause J, Reznik H. Investigations on flavonol accumulation in Fagopyrum esculentum Moench as influenced by P- and N-deficiency. Zeitschrift für Pflanzenphysiologie. 1976;70:392–400. https://doi.org/10.1016/S0044-328X(76)80158-4
  • Silva FB, Costa AC, Alves RRP, Megguer CA. Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. Am J Plant Sci. 2014;5:2509–2519. https://doi.org/10.4236/ajps.2014.516265

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c584d0be-76f4-430f-a7c0-5934c59382d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.