PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 4 |

Tytuł artykułu

The role of cell wall in plant embryogenesis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review presents recent data about cell wall involvement in plant embryogenesis. During plant development, the cell wall is subjected to precise regulation. During this process a bidirectional information exchange between the cell wall and the protoplast is observed. The cell wall also mediates in the cell-cell (apoplastic) and cell to cell (symplastic) information flow. Especially some products derived from the hydrolysis of specific cell wall compounds can act as short distance signal transduction molecules during the development. Oligosaccharins are a group of such products. Their activity and sources focused the researchers’ attention on the biochemical composition of the cell wall and the activity of some cell wall enzymes. The dramatic influence on the embryo body shape has also the cell wall synthesis machinery, including vesicular secretion pathways. Moreover, the interplay between the turgor pressure and counteracting cell walls and neighbouring cells (in higher organisms) creates the specific mechanical forces influencing the development of the whole plant. We conclude that discovering factors which can influence cell wall physiology and architecture is crucial for a better understanding of plant embryogenesis. In this review we summarize some recent experimental data reporting plant cell wall involvement in embryogenesis, putting special emphasis on somatic embryogenesis.

Wydawca

-

Rocznik

Tom

07

Numer

4

Opis fizyczny

p.1137-1151,fig.,ref.

Twórcy

  • Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Warsaw, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Warsaw, Poland

Bibliografia

  • 1. Peters, W. S., Hagemann, W. and Tomos, D. A. What makes plants different? Principles of extracellular matrix function in ‘soft’ plant tissues. Comp. Biochem. Physiol. Part A 125 (2000) 151-167.
  • 2. Sakurai, N. Cell wall functions in growth and development. A physical and chemical point of view. Bot. Mag. Tokyo 104 (1991) 235-251.
  • 3. Wojtaszek, P. Genes and plant cell walls: a difficult relationship. Biol. Rev. 75 (2000) 437-475.
  • 4. Kaplan, D. R. and Hagemann, W. The relationship of cell and organism in vascular plants - are cells the building blocks of plant form? Bio Sci. 41 (1991) 693-703.
  • 5. Haywood, V., Kragler, F. and Lucas, W. J. Plasmodesmata: Pathways for protein and ribonucleoprotein signalling. Plant Cell Supplement (2002) 303-325.
  • 6. Quatrano, R. S. and Shaw, S. L. Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci. 2 (1997) 15-21.
  • 7. Corellou, F., Potin, P., Brownlee, C., Kloareg, B. and Bouget F-Y. Inhibition of the establishment of zygotic polarity by protein tyrosine kinase inhibitors leads to an alteration of embryo pattern in Fucus. Dev. Biol. 219 (2000) 165-182.
  • 8. Grabowska, A., Filipecki, M. and Linkiewicz, A. Genetic regulation of plant embryogenesis. Adv. Cell. Biol. 28 (2001) 509-527.
  • 9. Kaplan, D. R. and Cooke, T. J. Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. Plant Cell 9 (1997) 1903-1919.
  • 10. Krikorian, A. D. and Smith, D. L. Somatic embryogenesis in carrot (Daucus carota). Lindsey K. Plant Tissue Culture Manual. Dordrecht: Kluwer Academic Publishers, A9 (1992) 1-32.
  • 11. Dodeman, V. L., Ducreux, G. and Kreis, M. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48 (1997) 1493-1509.
  • 12. Hecht, V., Velle-Calzada, J.-P., V. Hartog, M., Schmid, E.D.L., Boutilier K., Grossniklaus, U. and DeVries, S. C. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127 (2001) 803-816.
  • 13. Souter, M. and Lindsey, K. Polarity and signalling in plant embryogenesis. J. Exp. Bot. 51 (2000) 971-983.
  • 14. Brownlee, C. Role of the extracellular matrix in cell-cell signalling: Paracrine paradigms. Curr. Opin. Plant Biol. 5 (2002) 396-401.
  • 15. Giuliano, G., Lo Schiavo, F. and Terzi, M. Isolation and developmental characterization of temperature sensitive carrot cell variants. Theor. Appl. Genet. 67 (1984) 179-183.
  • 16. Lo Schiavo, F., Giuliano, G., De Vries, S. C., Genga, A., Bollini, R., Pitto, L., Cozzani, G., Nuti-Ronchi, V. and Terzi, M. A carrot cell variant temperature sensitive for somatic embryogenesis reveals a defect in the glycosylation of extracellular proteins. Mol. Gen. Genet. 223 (1990) 4901- 4907.
  • 17. De Jong, A. J., Cordewener, J., Lo Schiavo, F., Terzi, M., Vandekerckhove, J., Van Kammen, A. and De Vries, S. C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4 (1992) 425-433.
  • 18. De Jong, A. J., Hendriks, T., Meijer, E. A., Penning, M., Lo Schiavo, F., Terzi, M., Van Kammen, A. and De Vries, S. C. Transient reduction in secreted 32kD chitinase prevents somatic embryogenesis in the carrot (Daucus carota L.) variant ts11. Dev. Genet. 16 (1995) 332-343.
  • 19. Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., De Billy, F., Prome, J-C. and Denarie, J. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351 (1991) 670-673.
  • 20. De Jong, A. J., Heidstra, R., Spaink, H. P., Van Hartog, M., Meijer, E. A., Hendriks, T., Lo Schiavo, F., Terzi, M., Bisseling, T., Van Kammen, A. and De Vries, S. C. Rhizobium lipooligosacharides rescue a carrot somatic embryo mutant. Plant Cell 5 (1993) 615-620.
  • 21. Mo, L. H., Egertsdotter, U. and Von Arnold, S. Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology. Ann. Bot. 77 (1996) 143-152.
  • 22. Zhong, R., Ripperger, A. and Ye, Z-H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiol. 123 (2000) 59-69.
  • 23. Zhong, R., Kays, J., Schroeder, B. P. and Ye, Z-H. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14 (2002) 165-179.
  • 24. Fincher, G. B., Stone, B. A. and Clarke, A. E. Arabinogalactan proteins: structure biosynthesis and function. Annu. Rev. Plant Physiol. 34 (1983) 47-70.
  • 25. McCabe, P. F., Valentine, T. A., Forsberg, L. S. and Pennell, R. I. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9 (1997) 2225-2241.
  • 26. Yariv, J., Rapport, M. M. and Graf, L. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycoside. Biochem J. 85 (1962) 383-388.
  • 27. Chapman, A., Blervacq, A.-S., Vasseur, J. and Hilbert, J.-L. Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β- glucosyl Yariv reagent and epitope localisation during embryo development. Planta 211 (2000) 305-314.
  • 28. Van Hengel, A. J., Tadesse, Z., Immerzeel, P., Schols, H., van Kammen, A. and de Vries, S. C. N-Acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 125 (2001) 1880-1890.
  • 29. Domon, J.-M., Neutelings, G., Roger, D., David, A. and David, H. A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. J. Plant Physiol. 156 (2000) 33-39.
  • 30. Passarinho, P. A., Van Hengel, A. J., Fransz, P. F. and De Vries, S. C. Expression pattern of the Arabidopsis thaliana AtEP3/AtchilV endochitinase gene. Planta 212 (2001) 556-567.
  • 31. Dyachok, J., Wiweger, M., Kenne, L. and Von Arnold, S. Endogenous Nod-factor-like signal molecules promote early somatic embryo development in norway spruce. Plant Physiol. 128 (2002) 523-533.
  • 32. Schultze, M. and Kondorosi, A. What makes nodulation signals host-plant specific? Trends in Microbiol. 3 (1995) 370-372.
  • 33. Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J. J., Eberhard, S., Hahn, M. G., Lo, V. M., Marfa, V. and Meyer, B. Oligosaccharins - oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2/3 (1992) 181-198.
  • 34. Yong, H-Ch., Chang, H-S., Gupta, R., Wang, X., Zhu, T. and Luan, S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129 (2002) 661-677.
  • 35. Helleboid, S., Hendriks, T., Bauw, G., Inze, D., Vasseur, J. and Hilbert, J-L. Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J. Exp. Bot. 51 (2000) 1189-1200.
  • 36. Helleboid, S., Bauw, G., Belingheri, L., Vasseur, J. and Hilbert, J. L. Extracellular β-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205 (1998) 56-63.
  • 37. Driouich, A., Faye, L. and Staehelin, L. A. The plant Golgi apparatus: A factory for complex polysaccharides and glycoproteins. Trends Biochem. Sci. 18 (1993) 210-214.
  • 38. Shevell, D. E., Leu, W. M., Gillmor, C. S., Xia, G., Feldmann, K. A. and Chua, N. H. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77 (1994) 1051-1062.
  • 39. Shevell, D. E., Kunkel, T. and Chua, N-H. Cell wall alterations in the Arabidopsis emb30 mutant. Plant Cell 12 (2000) 2047-2059.
  • 40. Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., Lahaye, M., Höfte, H. and Truong, H.-N. QUASIMODO1 Encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and celi adhesion in Arabidopsis. Plant Cell 14 (2002) 2577-2590.
  • 41. Fry, S. C., Adlington, S., Hetherington, P. R. and Aitken, J. Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol. 103 (1993) 1-5.
  • 42. Ridley, B. L., O’Neil, M. A. and Mohnen, D. Pectins: structure, biosynthesis, and oligogalacturonide - related signaling. Phytochemistry 57 (2001) 929-967.
  • 43. Messiaen, J. and Van Cutsem, P. Polyamines and pectins. II. Modulation of pectic - signal transduction. Planta 208 (1999) 247-256.
  • 44. Mathieu, Y., Kurkdjian, A., Xia, H., Guern, J., Koller, A., Spiro, M., O’Neill, M., Albersheim, P. and Darvill A. Membrane responses induced by oligogalacturonides. Plant J. 1 (1991) 333-343.
  • 45. Legendre, L., Rueter, S., Heinstein, P. F. and Low, P. S. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 102 (1993) 233-240.
  • 46. Vissenberg, K., Verbelen, J-P., Miller, J. G. and Fry, S. C. To expend or not to expand, is Xet the only answer? Plant Physiol. Biochem. 38 (2000) 13.
  • 47. Xu, W., Purugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C. and Braam, J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7 (1995) 1555-1567.
  • 48. Thompson, J. E. and Fry, S. C. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J. 26 (2001) 23-34.
  • 49. Sulová, Z., Baran, R. and Farkaš, V. Release of complexed xyloglucan endotransglycosylase (XET) from plant cell walls by transglycosylation reaction with xyloglucan - derived oligosaccharides. Plant Physiol. Biochem. 39 (2001) 927-932.
  • 50. Purugganan, M. M., Braam, J. and Fry, S. The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum, and cold tolerance. Plant Physiol. 115 (1997) 181-190.
  • 51. Antosiewicz, D. M., Purugganan, M. M., Polisensky, D. H. and Braam, J. Cellular localization of Arabidopsis xyloglucan endotransglycosylase- related proteins during development and after wind stimulation. Plant Physiol. 115 (1997) 1319-1328.
  • 52. Kieran, P., Malone, D. and MacLoughlin, P. Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Adv. Biochem. Eng./Biotechnol. 67 (2000) 141-177.
  • 53. Campbell, P. and Braam, J. Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci. 4 (1999) 361-366.
  • 54. Linkiewicz, A. Isolation and analysis of genes induced and repressed during early stages of somatic embryogenesis of cucumber (Cucumis sativus L.). PhD. thesis, Warsaw Agricultural University (2001).
  • 55. Kwaśniak, A. Cloning and analysis of genes induced during somatic embryogenesis in cucumber (Cucumis sativus L.) cell suspension culture - comparison with the gene expression profile of Arabidopsis thaliana Heynh. PhD. thesis, Warsaw Agricultural University (2001).
  • 56. Creelman, R. A. and Mullet, J. E. Oligosaccharins, brassinolides, and jasmonates: Nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9 (1997) 1211-1223.
  • 57. Penel, C., Sticher, L., Kevers, C., Gaspar, T. and Greppin, H. Calcium- controlled peroxidase secretion by sugar-beet cells: effect of ionophores in relation to organogenesis. Biochem. Physiol. Pflanz. 179 (1984) 173-180.
  • 58. Cordewener, J., Booij, H., Van der Zandt, H., Van Engelen, F., Van Kammen, A. and De Vries, S. Tunicamycin - inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta 184 (1991) 478-486.
  • 59. Schiavone, F. M. and Cooke, T. J. Unusual patterns of somatic embryogenesis in domesticated carrot: Developmental effects of exogenous auxins and auxin transport inhibitors. Cell Diff. 21 (1987) 53-62.
  • 60. Joersbo, M., Andersen, J. M., Okkels, F. T. and Rajagopal, R. Isoperoxidases as markers of somatic embryogenesis in carrot cell suspension cultures. Physiol. Plant. 76 (1988) 10-16.
  • 61. Mårtensson, B., Sommarin, M. and Widell, S. Peroxidase activity and ATP-dependent Ca2+ transport in subcellular fractions of embryogenic and non-embryogenic Daucus carota cell suspensions. Plant Physiol. Biochem. 36 (1998) 515-524.
  • 62. Lynch, T. M. and Lintilhac, P. M. Mechanical signals in plant development: A new method for single cell studies. Dev. Biol. 18 (1997) 246-256.
  • 63. Hall, Qi and Cannon, M. C. The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14 (2002) 1161-1172.
  • 64. Sato, S., Toya, T., Kawahara, R., Whittier, R. F., Fukuda, H. and Komamine, A. Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Plant Mol. Biol. 28 (1995) 39-46.
  • 65. Ruiz-Avila, L., Burgess, S. R., Stiefel, V., Ludevid, M. D. and Puigdomenech, P. Accumulation of cell wall hydroxyproline-rich glycoprotein mRNA is an early event in maize embryo cell differentiation. Proc. Natl. Acad. Sci. USA 89 (1992) 2414-2418.
  • 66. Magioli, C., Barroco, R. M., Benicio-Rocha, C. A., de Santiago-Fernandes, L. D., Mansur, E., Engler, G., Margis-Pinheiro, M. and Sachetto-Martins, G. Somatic embryo formation in Arabidopsis and eggplant is associated with expression of a glycine-rich protein gene (Atgrp-5). Plant Sci. 161 (2001) 559-567.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c57b1f08-a67a-415e-bfb7-e28209deb5e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.