PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Effect of landscape control on the spatiotemporal variability of riverine chromophoric dissolved organic matter

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An increase in the release of sewage discharge and stream ecosystem degradation is contributing to increased chromophoric dissolved organic matter (CDOM) in the Yinma River Watershed, which is a polluted watershed of the Songhua River. This study involves the spatiotemporal characterization of CDOM, CDOM-DOC relationships, and the influence of environmental factors (e.g., natural geographical and anthropogenic activities). Riverine waters showed higher aCDOM (335) and DOC concentrations in the spring and autumn than in the summer, and positive correlations were found between the aCDOM (335) and DOC concentrations in the summer (r = 0.90, 2-tailed, p<0.01) and autumn (r = 0.58, 2-tailed, p<0.01). Storms in May 2016 affected DOC flux from terrestrial ecosystems into the stream, and the CDOM-DOC relationship in the spring. Environmental factors such as water quality, precipitation, soil, gradient, land-use, and GDP could have affected the optical properties of CDOM (DOC). Gradient was correlated with the optical properties (2-tailed, p<0.05) of CDOM. Types of land-use, pollutant discharge from point sources, and GDP (r = 0.58, 2-tailed, p<0.05) affected the composition and creation of CDOM (DOC). The correlations among CDOM absorption parameters, gradient, and GDP were driven by samples that were related to regional terrestrial and anthropogenic pollutants. High loading of complex CDOM (DOC) inputs from anthropogenic activities combine with natural influences and constitute a challenge for CDOM (DOC)-derived pollution treatment, and treatment of pollution in the watershed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.757-769,fig.,ref.

Twórcy

autor
  • Grassland Science Institute, Life Science College, Northeast Normal University, Chang Chun, China
autor
  • Natural Disaster Research Institute, Environment College,Northeast Normal University, Chang Chun, China

Bibliografia

  • 1. GRIFFIN C.G., FREY K.E., ROGAN J., HOLMES R.M. Spatial and inter-annual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Journal of Geophysical Research: Biogeosciences.116 (G3), 2011.
  • 2. YANG W., MATSUSHITA B., CHEN J. YOSHIMURA K., FUKUSHIMA T. Application of a semianalytical algorithm to remotely estimate diffuse attenuation coefficient in turbid inland waters. IEEE Geoscience and Remote Sensing Letters. 11 (6), 1046, 2014.
  • 3. ZHU W., TIAN Y.Q., YU Q., BECKER B.L. Using Hyperion imagery to monitor the spatial and temporal distribution of colored dissolved organic matter in estuarine and coastal regions. Remote Sensing of Environment. 134, 342, 2013.
  • 4. FICHOT C.G., BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in riverinfluenced ocean margins. Limnology and Oceanography. 57 (5), 1453-, 2012.
  • 5. FINDLAY S., QUINN J.M., HICKEY C.W., BURRELL G., DOWNES M. Effects of land use and riparian flow path on delivery of dissolved organic carbon to streams. Limnology and Oceanography. 46 (2), 345, 2001.
  • 6. LAMBERT T., DARCHAMBEAU F., BOUILLON S., ALHOU B., MBEGA J.D., TEODORU C.R., NYONI F.C., MASSICOTTE P., BORGES A.V. Landscape control on the spatial and temporal variability of chromophoric dissolved organic matter and dissolved organic carbon in large African rivers. Ecosystems. 18 (7), 1224, 2015.
  • 7. SHAO T., SONG K., DU J., ZHAO Y., DING Z., GUAN Y., LIU L., ZHANG B. Seasonal variations of CDOM optical properties in rivers across the Liaohe Delta. Wetlands. 1, 1, 2015.
  • 8. SONG K.S., ZANG S.Y., ZHAO Y., LI L., DU J., ZHANG N.N., WANG X.D., SHAO T.T., GUAN Y., LIU L. Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrology and Earth System Sciences. 17 (10), 4269, 2013.
  • 9. ZHOU Y., ZHANG Y., SHI K., NIU C., LIU X., DUAN H. Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter. Journal of Great Lakes Research. 41 (2), 597, 2015.
  • 10. KAUSHAL S.S., GROFFMAN P.M., MAYER P.M., STRIZ E., GOLD A. J. Effects of stream restoration on denitrification in an urbanizing watershed. Ecological Applications. 18 (3), 789, 2008.
  • 11. STANLEY E.H., POWERS S.M., LOTTIG N.R., BUFFAM I., CRAWFORD J.T. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshwater Biology. 57 (s1), 26, 2012.
  • 12. WILLIAMSON C.E., BRENTRUP J.A., ZHANG J., RENWICK W.H., HARGREAVES B.R., KNOLL L.B., OVERHOLT E.P., ROSE K.C. Lakes as sensors in the landscape: optical metrics as scalable sentinel responses to climate change. Limnology and Oceanography. 59 (3), 840, 2014.
  • 13. GREENWALD M.J., BOWDEN W.B., GOOSEFF M.N., ZARNETSKE J.P., MCNAMARA J.P., BRADFORD J.H., BROSTEN T.R. Hyporheic exchange and water chemistry of two arctic tundra streams of contrasting geomorphology. Journal of Geophysical Research: Biogeosciences. 113 (G2), 2008.
  • 14. LIN C., HE M., ZHOU Y., GUO W., YANG Z. Distribution and contamination assessment of heavy metals in sediment of the Second Songhua River, China. Environmental Monitoring and Assessment. 137 (1), 329, 2008.
  • 15. LEVSHINA S.I., EFIMOV N.N., BAZARKIN V.N. Assessment of the Amur River ecosystem pollution with benzene and its derivatives caused by an accident at the chemical plant in Jilin City, China. Bulletin of environmental contamination and toxicology. 83, 776, 2009.
  • 16. LI S., ZHANG J., MU G., HA S., SUN C., JU H., ZHANG F., CHEN Y.N., Ma Q. Optical Properties of Chromophoric Dissolved Organic Matter in the Yinma River Watershed and Drinking Water Resource of Northeast China. Polish Journal of Environmental Studies. 25 (3), 2016.
  • 17. Environmental quality standards for surface water (GB 3838-2002). Available at: http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml. Accessed June 1, 2002.
  • 18. BRICAUD A., MOREL A., PRIEUR L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography. 26 (1), 43, 1981.
  • 19. SMITH R.C., BAKER K.S. Optical properties of the clearest natural waters (200-800 nm). Applied optics. 20 (2), 177, 1981.
  • 20. WEISHAAR J.L., AIKEN G.R., BERGAMASCHI B.A., FRAM M.S., FUJII R., MOPPER K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental science & technology. 37 (20), 4702, 2003.
  • 21. D‘SA E.J., GOES J.I., GOMES H. Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool. Biogeosciences. 11 (12), 3225, 2014.
  • 22. WEN Z.D., SONG K.S., ZHAO Y., DU J., MA J.H. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China. Hydrology & Earth System Sciences Discussions. 12 (6), 5895, 2015.
  • 23. ZHANG Y., ZHANG E., YIN Y., VAN DIJK M. A., FENG L., SHI Z., LIU M., QIN B. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography. 55 (6), 2645, 2010.
  • 24. TWARDOWSKI M.S., DONAGHAY P.L. Photobleaching of aquatic dissolved materials: Absorption removal, spectral alteration, and their interrelationship. Journal of Geophysical Research: Oceans. 107 (C8), 2002.
  • 25. YU H., QU F., SUN L., LIANG H., HAN Z.S., CHANG H.Q., SHAO S.L., LI G.B. Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): characterized by fluorescence excitation emission matrix coupled with parallel factor analysis. Chemosphere. 121, 101, 2015.
  • 26. RAYMOND P.A., MCCLELLAND J.W., HOLMES R.M., ZHULIDOV A.V., MULL K., PETERSON B.J., STRIEGL R.G., AIKEN G.R., GURTOVAYA T.Y. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochem Cycle. 21 (4), 2007.
  • 27. ISHII S.K., BOYER T.H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environmental science & technology. 46 (4), 2006, 2012.
  • 28. BREZONIK P.L., OLMANSON L.G., FINLAY J.C., BAUER M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment. 157, 199, 2015.
  • 29. JIAO K.W., LI F.X., ZHOU Q.X. Spatial distribution and pollution level evaluation of nutrients in the Songhua River Basin. Journal of Agro-Environment Science. 34, 769, 2015.
  • 30. KALBITZ K., SOLINGER S., PARK J.H., MICHALZIK B., MATZNER E. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science. 165 (4), 277, 2000.
  • 31. GREGORIC E.G., ROCHETTE P., MCGUIRE S., LIANG B.C., LESSARD R. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring-applied manure. Journal of Environmental Quality. 27 (1), 209, 1998.
  • 32. FROST P.C., LARSON J.H., JOHNSTON C.A., YOUNG K.C., MAURICE P.A., LAMBERTI G.A., BRIDGHAM S.D. Landscape predictors of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed. Aquatic Sciences. 68 (1), 40, 2006.
  • 33. JIANG R., HATANO R., ZHAO Y., KURAMOCHI K., HAYAKAWA A., WOLI K.P., SHIMZU M. Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrological processes. 28 (19), 5105, 2014.
  • 34. FELLMAN J.B., D’AMORE D.V., HOOD E., BOONE R.D. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska. Biogeochemistry. 88 (2), 169, 2008.
  • 35. BUFFAM I., GALLOWAY J.N., BLUM L.K., MCGLATHERY K.J. A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream. Biogeochemistry. 53 (3), 269, 2001.
  • 36. SHURPALI N.J., VERMA S.B., KIM J., ARKEBAUER T.J. Carbon dioxide exchange in a peatland ecosystem. Journal of Geophysical Research: Atmospheres. 100(D7), 14319, 1995.
  • 37. LIU M., YU W.T., JIANG Z.S., ZHAO X. Influencing Factors and Ecological Effects of Dissolved Organic Carbon in Soil. Chinese. Chinese Journal of Soil Science. 4, 030, 2007.
  • 38. HEINZ M., GRAEBER D., ZAK D., ZWIRNMANN E., GELBRECHT J., PUSCH M.T. Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen. Environmental science & technology. 49 (4), 2081, 2015.
  • 39. DELPRAT L., CHASSI P., LINERES M., JAMBERT C. Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation. Developments in Crop Science. 25, 257, 1997.
  • 40. WILSON H.F., XENOPOULOS M.A. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems. 11 (4), 555, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c55a0f6a-a9a5-43df-b88a-5dded73e7b00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.