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S u m m a r y. New algorithm of the least-squares approxi-
mation of the spectrum of relaxation frequencies by the fi nite 
series of Hermite functions using discrete-time noise corrupted 
measurements of relaxation modulus obtained in stress relax-
ation test has been proposed. Since the problem of relaxation 
spectrum identifi cation is ill-posed, the inverse problem of Tik-
honov regularization with guaranteed model approximation is 
used to achieve the stability of the scheme. The linear conver-
gence of approximations generated by the scheme is proved 
for noise measurements. It is also indicated that the accuracy 
of the spectrum approximation depends both on measurement 
noises and regularization parameter and on the proper selection 
of time-scale parameter of the basis functions. The validity and 
effectiveness of the method is demonstrated using simulated 
data of Gaussian relaxation spectrum. Applying the proposed 
scheme, the relaxation spectrum of an unconfi ned cylindrical 
specimen of the beet sugar root is determined.

K e y  w o r d s : relaxation spectrum, identifi cation algo-
rithm, regularization, Hermite functions

INTRODUCTION

The selection of an appropriate mathematical rep-
resentation is of central importance in the analysis of 
a physical system. Essentially, the choice of respective 
model depends on two criteria: the particular charac-
teristics to be abstracted and our ability to specify the 
representation quantitatively. System identifi cation deals 
with the problem of building mathematical models of 
systems (processes) based on observed data. In order to 
fi nd such a model, which will describe well the system 
(process), an appropriate identifi cation method must be 
derived [16].

In rheology it is assumed that the relaxation modulus 
G(t) has the following representation [5,18]:

( ) ( )
0

tG t H e dνν ν
∞

−= ∫ , (1)

where: H(v) His the spectrum of relaxation frequen-
cies v 0. 

Since, as it is well-known, for many materials the 
long-term modulus lim

t
G(t) = G >0 (see [18,21], as 

well as the Example 3 below), instead of the classical 
equation (1), it is convenient to consider the following 
‘more-realistic’ augmented material description:

( ) ( ) ( )
0

tG t H e d G G t Gνν ν
∞

−
∞ ∞= + = +∫ . (2)

The spectrum is recovered from discrete-time meas-
urements ( ) ( ) ( )i i iG t G t z t= + , i = 1, ,N, of relaxation 
modulus obtained in stress relaxation test. Here z(t

i
) is 

additive measurement noise. A complication for deter-
mining the relaxation spectrum is, that this problem is 
undetermined and ill-conditioned in the Hadamard sense 
[11,21]. Due to the noise or truncation of the experimental 
data, many models may fi t the relaxation modulus ex-
perimental data adequately, but small errors in the data 
may lead to large changes in the determined models. The 
mathematical diffi culties can be overcome by synthesis 
of an appropriate identifi cation algorithm. In the paper 
[22] the following model of the spectrum H(v) is taken:

( ) ( )
1

0

K

K k k

k

H g hν ν
−

=

= ∑ , (3)

where: g
k
 are constants and h

k
(v) are Hermite func-

tions:
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−= = …, (4)

with: Hermite polynomial P
k
(x) defi ned by [22; eqs. 

(3), (4)]. Here notation [22; eqs. (3), (4)] is used for the 
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equations (3) and (4) in the paper [22]. The square index 
[12,14,16] is applied:

( ) ( ) ( )
2

1

N

N K i K i

i

Q G t G t
=

 = − ∑g , (5)

and the resulting task of the least-squares approximation 
of the spectrum H(v) by the linear combination of Hermite 
functions is solved. Tikhonov regularization [24] is used 
to guarantee the stability of the scheme for computing the 
vector [ ]0 1

T

K Kg g G− ∞= …g  of optimal model pa-
rameters. Guaranteed model approximation GMA [20,22] 
is adopted for the optimal choice of the best regularization 
parameter ˆ. The numerical realization of the scheme 
by using the singular value decomposition (SVD [1]) is 
discussed and the resulting computer algorithm is also 
outlined in the previous paper [22]. The model ( )KG t  of 
the relaxation modulus G(t) (2) is described by:

( ) ( ) ( )
1

0

K

K K k k

k

G t G t G g t Gφ
−

∞ ∞
=

= + = +∑ , (6)

where: the form of the functions 
k
(t) are given by 

Theorem 1 in the paper [22]. Theoretical and simulational 
analysis of the identifi cation algorithm properties and 
the resulting optimal model is the purpose of this paper. 
The proofs of the main results are omitted due to space 
limitations. The applications example is also given. 

IDENTIFICATION SCHEME

The calculation of the relaxation spectrum model 
involves the following steps:
1. Perform the stress relaxation test [18,19] and record 

the measurements G(t
i
), i = 1, ,N, of the relaxation 

modulus at times t
i

0.
2. Compute the matrix 

N,K
 [22; eq. (16)] and next examine 

if 1
T

N,K N K +≠ 0GΦ  , where  ( ) ( )1

T

N NG t G t =  …G

is the vector of measurement data. If not, select new 

time-scale parameter  and/or a new number K of the 
basis functions and repeat Step 2 or repeat the experi-
ment (Step 1). Otherwise go to Step 3.

3. Determine SVD decomposition of the matrix 
N,K

:

N,K
=U VT, (7)

 where:  = diag(
1
, ,

r
,0, ,0) is N×(K+1) diago-

nal matrix containing the non-zero singular values 

1
, ,

r
 of the matrix 

N,K
with r = rank(

K,K
) and 

V RK+1,K+1 and U RN,N are orthogonal uniquely de-
fi ned matrices [1].

4. Compute ( )N
N KQ g  according to the formula 

( ) 2

1= +
= ∑g

NN
N K ii r

Q y , where y
i
 are the elements of 

the vector T
N=Y U G  and N

Kg  is the normal solution 
of the original (not regularized) least-squares problem 
(5), (6) for noise data.

5. Chose ( )ˆ N
N N KQ Q> g .

6. Solve the GMA equation:

( )
( )

2 2

2
21

ˆλ

σ λ=

+ =
+

∑ g
r

Ni
N K N

i
i

y
Q Q , (8)

and compute the best regularization parameter ˆ.

Compute the regularized solution:

ˆ

ˆˆ λ
λΛ= =g g V U G

T
K K N, (9)

where: the diagonal structure matrix:

( ) ( )( )2 2
ˆ 1 1

ˆ ˆ 0 0λΛ σ σ λ σ σ λ= + +… …r rdiag , , , , , .

Determine the spectrum of relaxation frequencies 
( )ˆ νKH  according to (cf. (3)):

( ) ( )
1

0

ˆ ˆν ν
−

=

= ∑
K

K k k

k

H g h , (10)

where: ˆkg  are the elements of vector ĝK.

Obviously, ( ) ( ) ( )ˆν ν δ ν∞= +K KH H G  is the relaxa-
tion spectrum of the form [22; eq.(14)] corresponding to 
the optimal model of relaxation modulus of the form (6). 

Remark 1. Only the SVD of the matrix 
N,K

 (7) is space 
and time consuming task of the scheme. The SVD is acces-
sible in the form of optimized numerical procedures in most 
commonly used contemporary computational packets.

Remark 2. It is easy to note that the matrix 
N,K

(see [22; eq. (16)]) depends on the choice of the basis 
functions, in particular on the scaling factor  selection, 
as well as on the measurement points {t

i
}, however does 

not depend on the experiment results. Thus, when the 
identifi cation scheme is applied for successive samples 
of the material, the SVD of 

N,K
 in step 3 have not to be 

multiple repeated, while the same time instants {t
i
} and 

the same model parameters  and K are kept.
Remark 3. The Hermite functions h

k
(v) defi ned by the 

formula (4) can be determined using Hermite polynomials 
P

k
(x) [22; eqs. (3),(4)]. Polynomials P

k
(x) are accessible in 

some computational packets; they may be also computed 
according to defi nitional recursive formula. 

Remark 4. By the optimal choice of the scaling factor 
, the best fi t of the model to the experimental data can be 

achieved. However, in practice a simple rough rule for choos-
ing the scaling factor , based on the comparison of a few 
fi rst functions from the sequence {

k
(t)} for different values 

of  with the experimentally obtained function G(t) is quite 
enough. In the same manner, the number K of the series (6) 
elements can be initially evaluated. Thus, the choice both 
of the number K as well as the parameter  must be done 
a posteriori, after the preliminary experiment data analysis. 

ANALYSIS

SMOOTHNESS

Since the Hermite basis functions h
k
(v), k = 0,1, ,

form an orthonormal basis in the Hilbert space L
2
(– , )
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of real-valued square-integrable functions on the interval 
(– , ) [15], for an arbitrary H

K
(v) of the form (3) the 

following estimation is valid:

( )

( ) ( ) ( )

2 2

2
0

1 1
2

0 0

ν ν

ν ν ν ν ν

∞

− −∞ ∞

−∞ −∞= =

= ≤

≤ = ∑ ∑

∫

∫ ∫

K K

K K

K k j k j

k j

H H d

H d g g h h d ,

and whence fi nally:
1

2 22

2 2
0

K

K k K

k

H g
−

=

≤ =∑ g . (11)

Here: ||  ||
2
 means the square norm both in the real 

Euclidean space as well as in L
2
(0, ). Therefore, the 

smoothness of the regularized solution ĝK (9) guarantees 
that the fl uctuations of the respective relaxation spectrum 

( )ˆ νKH  (10) are bounded. The Hermite algorithm is in 
fact quasi-orthogonal identifi cation scheme.

STABILIZATION

The purpose of the regularization relies on stabiliza-
tion of the resulting model vector K

λ
g . The effectiveness of 

this approach can be evaluated by the following relations, 
which follow for an arbitrary regularization parameter 
immediately from Proposition 2.2 in [21].

Proposition 1. Let K 1, r = rank(
N,K

) and regulari-
zation parameter >0. For the regularized solution K

λ
g

[22; eq. (20)] the following equality and inequality hold:

( )
2 2 2

2 2

2 22 221 1

r r
Ni i i

K K

i i i
i

y yλ σ

σσ λ= =

= < =
+

∑ ∑g g , (12)

where: N
Kg is the normal solution of the linear-quad-

ratic problem (5),(6).

Therefore, by (12) the following rule holds: the greater 
the regularization parameter  is, the fl uctuations of the 
vector K

λ
g  are highly bounded. Thus, the regularization 

parameter controls the smoothness of the regularized 
solution. Simultaneously, however, the best – in the GMA 
sense – parameter ˆ is monotonically increasing function 
of ˆ

NQ . Thus, it is immediately evident that, the worse the 
relaxation modulus measurements approximation qual-
ity is, the regularized vector ĝK and, in view of (11), the 
computed spectrum ( )ˆ νKH  are highly smoothed. The 
upper bounds of the vector ĝK and the norm of spectrum 

( )ˆ νKH  are established by our next result. 

Proposition 2. Let K 1, N K and ( )ˆ N
N N KQ Q> g .

Then, for the GMA regularized solution ĝK (9) the fol-
lowing estimations hold: 

2 2 2 2 2 4 2

22
1 1 1

ˆˆ ˆ
r r N

K K i i i i N i

i i i r

H y y Q yσ σ
= = = +

    
≤ ≤ −    

    
∑ ∑ ∑g . (13)

CONVERGENCE

Let us estimate the regularized vector ĝK error, which 
is measured by the norm 

2
ˆ N

K K−g g , where N
Kg  is the nor-

mal solution of the least-squares task (5),(6) for noise-free 
data. Obviously, relaxation spectrum ( )ˆ νKH  (10) is only 
approximation of that spectrum, which can be obtained 
in the class of models (3) by direct minimization (without 
regularization) of the quadratic index (5) for noise-free 
measurements, i.e. the approximation of the function 

( ) ( )1

0

KN N
K k kk

H g hν ν−

=
= ∑ , where N

Kg  are the elements 

of vector N
Kg . We have the following convergence result. 

Proposition 3. Let K 1, N K and ( )ˆ N
N N KQ Q> g .

Then, the following inequalities hold:

( ) 22 2

1 1ˆˆ ˆN N N
K K K K N N K N

r r

H H Q Q
σ σ

− ≤ − ≤ − +g g g z , (14)

where: z
N

=[z(t
1
) z(t

N
)]T is the measurement noises 

vector. 

Therefore, the vector ĝK converges to the normal solu-
tion N

Kg , and the spectrum ( )ˆ νKH  tends to the ‘normal’ 
spectrum ( )N

KH ν  in each point v, at which they are both 
continuous, linearly with respect to the norm ||zN||

2
, as 

( )ˆ N
N N KQ Q→ g  and ||zN||

2
0, simultaneously.

Thus, the accuracy of the spectrum approximation 
depend both on the measurement noises and the assumed 
model quality as well as on the singular values of the 
matrix 

N,K
, which, in turn, depend on the proper selec-

tion of the time-stale factor  of h
k
(v) (see Remark 4).

SIMULATION STUDIES 
OF NOISE ROBUSTNESS

We now present the results of the theoretical and nu-
merical studies of the infl uence of the measurement noises 
on regularized solution. The experiment simulations are 
conducted using Gaussian relaxation spectrum. Such an 
example illustrates most of the works concerning relaxation 
or retardation spectrum identifi cation, for example [4,23]. 

Example 1. Consider viscoelastic material whose re-
laxation spectrum is described by the Gauss distribution:

( ) ( )2
20 721

6 2
H e

νν
π

− −= . (15)

The corresponding relaxation modulus is described 
by:

( ) ( )220 181
3 2 5 2 3

2

t tG t e erfc t− += − , (16)

where: erfc(t) is defi ned by [22; eq. (11)]. 

The spectrum H(v) (15) is given in Figure 3 
(dashed line). In experiment the sampling instants 
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t
i
 was generated in the constant period in time in-

terval T = [0;0,4] seconds selected on the basis of the 
relaxation modulus G(t) (16) course in time. In order 
to study the infl uence of the noise variance 2 on the 
vector of model parameters measurement noises {z

i
}

have been generated randomly with uniform distribu-
tion on the interval [–h,h] for h = 0,0005;0,001;0,005;0,01 
and N = 100,500,1000,5000,10000. h = 0,01 is 1% of the 
maximum value of G(t) and h = 0,0005 is about 1% of the 
mean value of the modulus. Such measurement noises 
are even strongest than the true disturbances recorded 
for the biological materials (see [21, Chapter 5.5.4]). In 
the case of the sugar beet sample from example 3 below 
disturbances have not exceeded 0,8% of the maximum 
value of G(t) and have not exceeded 0,7% of the mean 
value of the modulus. The experiment have been repeated 
n = 500 times for every pair (N, 2) for K = 6 and K = 8.

The distance between ĝK and the regularized param-
eter for noise-free measurements:

T
K K N

λ
λ= =

ɶ

ɶɶg g V U GΛ , (17)

has been estimated by normalized mean error defi ned 
for n element sample as:

( )2

2 2
1

1
ˆ

n

K, j K, j K, j

j

ERR N,K,
n

σ
=

= −∑ ɶ ɶg g g , (18)

where: ĝK,j
 denote the regularized model parameter 

ĝK for noise case and K, j
ɶg  is the regularized noise-free 

parameter determined for j–th experiment repetition for 

a given pair (N,K), j = 1, ,n. Since in the experiment the 
sampling period has been constant the vector K, j

ɶg  does 
not depend on j, i.e. K, j

ɶg  = K,
ɶg . Relationship of ERR(N,K, 2)

on N and 2 is depicted in Figures 1 and 2.
The ranges of variation of the index ERR(N,K, 2)

obtained in the simulation experiment are given in table 1. 
Time-scale factor  = 0,06[s] was taken and kept valid in all 
the simulation experiments. Since the index  ( )N

N KQ Ng

was included in the range from 3,0722E-6 (for small 
noises) to 2,578E-4 (for strong noises), the assumed value 
of model approximation index ˆ

NQ  was taken such that ˆ
NQ

/N vary in the range from 0,050 to 0,087, respectively, for 
small and strong noises. The index ERR(N,K, 2) depends 
on the noise variance as well as on the matrix 

N,K
 and 

on the assumed value of model approximation index ˆ
NQ

. The index ERR(N,K, 2) does not depend essentially on 
the number of measurements but signifi cantly depends 
on the intensity of noises. The algorithm ensures very 
good noise robustness for small and medium disturbanc-
es; the index ERR(N,K, 2) does not exceed 1,5%. For 
large noises the index ERR(N,K, 2) do not exceed 8%. 
The next two examples show how the scheme proposed 
can be used in the relaxation spectrum identifi cation. 

Ta b l e  1 .  The ranges of variation of the error index 
ERR(N,K, 2) obtained in the simulation experiment

ERR(N,K, 2) h=0,0005 h=0,001 h=0,005 h=0,01

K=6 0,0022 0,0049 0,0044 0,0096 0,0219 0,036 0,0402 0,0791

K=8 0,006 0,0095 0,0097 0,0157 0,0465 0,0643 0,0537 0,077

 ( )2σN,K,ERR

N 
2σ

100 
500 

1000 
5000 

8⋅10
-8 3⋅10

-7 
8⋅10

-6 
3⋅10

-5 

10000 

0 

0,026

0,053

0,079

Fig. 1. The index ERR(N,K, 2) as a function of N and 2 for  
K = 6

 ( )2σN,K,ERR

N 
2σ

100 
500 

1000 
5000 

8⋅10
-8 3⋅10

-7 
8⋅10

-6 
3⋅10

-5 

10000 

0 

0,02

0,05

0,077 

Fig. 2. The index ERR(N,K, 2) as a function of N and 2 for 
K = 6
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Example 2. Let us consider again the Gaussian spec-
trum H(v) (15). The modulus ( ) ( ) ( )G t G t z t= +  corrupted 
by noises z(t) of the uniform distribution in the interval 
[–0,02; 0,2] has been sampled at N = 500 instants at the 
constant period t = 0,0008[s]. The parameters K = 8 and 

 = 0,06[s] are chosen according to Remark 4. 
Since ( ) 0 06495N

N KQ ,=g , the assumed value of mod-
el quality is taken as follows: ˆ 0 06527NQ ,= . The GMA 
regularization parameter: ˆ 5 5E -λ = . The true relaxation 
spectrum H(v) (15) and the resulting approximated model 

( )ˆ νKH  (10) are plotted in Figure 3.

RELAXATION SPECTRUM OF THE SUGAR 
BEET SAMPLE 

Example 3. A cylindrical sample of 20 [mm] diameter 
and height was obtained from the root of sugar beet Janus 
variety [9]. During the stress relaxation test performed by 
Go acki and co-workers [9], in the initial phase the strain 
was imposed instantaneously, the sample was precondi-
tioned at the 0,5 [m·s-1] strain rate to the maximum strain. 
Next, during the second phase at constant strain the cor-
responding time-varying force induced in the specimen 
was recorded during the time period [0,5;96,2] seconds 
in 958 measurement points with the constant sampling 
period t = 0,1[s]. The experiment was performed in the 
state of uniaxial stress; i.e. the specimen examined under-
went deformation between two parallel plates (for details 
see [9]). Modelling mechanical properties of this material 
in viscoelastic regime is justifi ed in view of many stud-
ies, e.g., [2,9]. The respective relaxation modulus were 
computed using simple modifi cation of the well-known 
Zapas and Craft rule [19] derived in [21]. 

( )νKĤ

[MPa·s]

0,016 1,44

0 

50 

0,000 0,00 0,01 0,1 1 10 

Relaxation frequency v [s
-1

] 

( )νKĤ

[MPa·s]

0,019 1,80

0 

50 

0,000 0,00 0,01 0,1 1 10 

Relaxation frequency  v [s
-1

] 

Fig. 4. The relaxation spectrum models ( )ˆ νKH  of two samples 
of beet sugar root
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Fig. 5. The relaxation modulus measurements G(t
i
) (points) and 

the best model GK
(t) (solid line) for two samples

The proposed identifi cation scheme was applied 
and the relaxation spectra obtained are plotted in Fig-
ure 4 for two samples. The respective optimal models

( ) ( )1

0
ˆˆ

K

K k kk
G t g t Gφ−

∞=
= +∑  are plotted in Figure 5, 

where the relaxation modulus measurements are also 
shown. For both samples K = 8 and  = 10,4[s] was cho-
sen. The computed long-term modulus was as follows: 

[ ]ˆ 3 436G , MPa∞ =  and [ ]ˆ 6 877G , MPa∞ = .

CONCLUSIONS

An algorithm has been found for the calculation of 
relaxation spectrum from the discrete-time measure-
ment data of the linear relaxation modulus. Tikhonov 
regularization and guaranteed model approximation are 
used to solve it. As a result, the stability of the scheme 
is guaranteed. Due to the choice of the Hermite basis 
functions, for which the basis functions for relaxation 
modulus are given by the convenient recursive formula, 
the algorithm is very useful for implementation. This 
choice also guarantees that smoothing of the regularized 
solution ensures smoothing of the relaxation spectrum 
model. The choice of the scaling-time factor in order to 
achieve a good fi t of the model to the experimental data 
is discussed and the noise robustness is demonstrated. 
It is also indicated that the accuracy of the spectrum 
approximation depends both on measurement noises and 
regularization parameter and on the proper selection of 
the time-scale parameter of the basis functions. 

Although the paper is concerned with the relaxation 
spectrum identifi cation using stress experiment data, 
a modifi cation of the scheme proposed for determination 
of the retardation spectrum using the creep compliance 
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measurements obtained in creep test [18] is possible as 
well. 

The proposed method \ provides us with the tool 
for relaxation spectrum identifi cation applicable for an 
arbitrary viscoelastic material. We consider a situation 
where only the time-measurements from relaxation test 
are accessible for identifi cation. This is important in 
studying the rheological properties of many materials, 
e.g., biodegradable materials [6], different pelets [3], 
livestock meat [17] and different plant materials [2, 9, 
18]. The proposed method leads to insights into how to 
estimate the laws of such materials. Therefore it lies in 
the broad area of studying mechanical properties of such 
materials [7, 8, 10, 13,14].
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ALGORYTM IDENTYFIKACJI SPEKTRUM RELAKSACJI 

MATERIA ÓW LEPKOSPR YSTYCH NA PODSTAWIE 

ZAK ÓCONYCH POMIARÓW MODU U RELAKSACJI

S t r e s z c z e n i e . W pracy przedstawiono algorytm iden-
tyfi kacji ci g ego spektrum relaksacji materia ów liniowo-
lepkospr ystych na podstawie dyskretnych zak óconych po-
miarów z testu relaksacji napr e . Model spektrum relaksacji 
dany jest kombinacj  liniow  funkcji Hermita. Jego param-
etry dobrano optymalnie w sensie zregularyzowanej metody 
najmniejszej sumy kwadratów. Zastosowano regularyzacj
Tichonowa, wspó czynnik regularyzacji dobrano metoda 
gwarantowanej jako ci modelu. Zbadano w asno ci algo-
rytmu i wyznaczonego modelu. Dla pomiarów z na o onym
szumem wykazano jego liniow  zbie no . Pokazano, e
dok adno  przybli enia spectrum relaksacji zale y zarówno 
od intensywno ci zak óce  oraz wspó czynnika regularyzacji 
jak i odpowiedniego doboru parametrów funkcji bazowych 
modelu. Przeprowadzone badania symulacyjne potwierdzi y
dok adno  modelu i jego odporno  na zak ócenia. Wyznac-
zono spektrum relaksacji dwu przyk adowych próbek buraka 
cukrowego.

S o w a  k l u c z o w e : spektrum relaksacji, algorytm iden-
tyfi kacji, regularyzacja, funkcje Hermita


