Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 73 | 4 |

Tytuł artykułu

Gnostic cells in the 21st century


Warianty tytułu

Języki publikacji



In this short review, I revise the notion of gnostic cells posited by Konorski, together with similar arguments by James, Lettvin and Barlow - namely, the idea of pontifical, grandmother and cardinal cells, respectively. I then discuss whether the characteristics of the recently discovered concept cells, i.e. neurons in the human medial temporal lobe with a very high degree of specificity and invariance, fit the conjecture of gnostic or grandmother cells and then discuss the key role of concept cells in memory formation.

Słowa kluczowe








Opis fizyczny



  • Centre for Systems Neuroscience. University of Leicester, Leicester, U.K.


  • Attwell D, Laughlin SB (2001) An energy budget for signal¬ing in the grey matter of the brain. J Cereb Blood Flow Metab 21: 1133-1145.
  • Barlow HB (1953) Summation and inhibition in the frog's retina. J Physiol 119: 69-88.
  • Barlow HB (1972) Single units and sensation: a neuron doc¬trine for perceptual psychology. Perception 1: 371-394.
  • Barlow HB (1994) The neuron doctrine in perception. In: The Cognitive Neurosciences (Gazzaniga M, Ed.) MIT Press, Boston, MA.
  • Barlow HB (1996) Cell assemblies versus single cells. In: Brain Theory - Biological Basis and Computational Principles (Aertsen A, Braitenberg V, Eds). Elsevier, Amsterdam, NL.
  • Barlow HB, Parker A, Singer W, Thorpe S (2009) Barlow's 1972 paper. Perception 38: 795-807.
  • Borges JL (1944) Fictions. Penguin, London, UK.
  • Bowers J (2009) On the biological plausibility of grand¬mother cells: Implications for neural network theories in psychology and neuroscience. Psychol Rev 116: 220¬251.
  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369-384.
  • DeFelipe J, Jones EG (1988) Cajal on the cerebral cortex. Oxford University Press, Oxford, UK.
  • Engel AK, Singer W (2001) Temporal binding and the neu¬ral correlates of sensory awareness. Trends Cogn Sci 5: 16-25.
  • Engel AK, Moll CKE, Fried I, Ojermann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6: 35-47.
  • Freud S (1953) Project for a Scientific Psychology (1895), The Standard Edition of the Complete Psychological Works of Sigmund Freud. Hogarth Press, London, UK.
  • Fried I, MacDonald KA, Wilson CL (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18: 753-765.
  • Fried I, Wilson CL, Maidment NT, Engel J, Behnke E, Fields TA, MacDonald KA, Morrow JW, Ackerson L (1999) Cerebral microdialysis combined with single¬neuron and electroencephalographs recording in neuro- surgical patients - Technical note. Journal of Neurosurgery 91: 697-705.
  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar syn-chronization which reflects global stimulus properties. Nature 338: 334-337.
  • Gross C (1992) Representation of visual stimuli in inferior termporal cortex. Phil Trans R Soc Lond B 335: 3-10.
  • Gross C (2002) Genealogy of the "Grandmother Cell". The Neuroscientist 8: 512-518.
  • Gross C (2008) Single neuron studies of inferior temporal cortex. Neuropsychologia 46: 841-852.
  • Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166: 1303-1306.
  • Harris CS (1980) Insight or out of sight? Two examples of perceptual plasticity in the human adult. In: Visual Coding and Adaptability (Harris CS, Ed.) Erlbaum, Hillsdale, NJ.
  • Hebb DO (1949) The Organization of Behavior. John Wiley & Sons, New York, NY.
  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79: 2554-2558.
  • Hubel D, Wiesel TN (1959) Receptive fields of single neu¬rones in the cat's striate cortex. J Physiol 148: 574¬591.
  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160: 106-154.
  • Hubel D, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229-289.
  • Hubel DH, Wiesel TN (1968) Receptive fields and func¬tional architecture of monkey striate cortex. J Physiol 195: 215-243.
  • Hung C, Kreiman G, Poggio T, DiCarlo J (2005) Fast read¬out of object information in inferior temporal cortex. Science 310: 863-866.
  • Ison M, Quian Quiroga R (2008) Selectivity and invariance for visual object perception. Front Biosci 13: 4889¬4903.
  • James W (1890) The Principles of Psychology. Cosmo clas¬sics, New York, NY.
  • Konorski J (1967) Integrative Activity of the Brain: An Interdisciplinary Approach. University of Chicago Press, Chicago, IL.
  • Kreiman G, Koch C, Fried I (2000a) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3: 946-953.
  • Kreiman G, Koch C, Fried I (2000b) Imagery neurons in the human brain. Nature 408: 357-361.
  • Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity of local field poten¬tials and spikes in the macaque inferior temporal cortex. Neuron 49: 433-445.
  • Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10: 420-430.
  • Lennie P (2003) The cost of cortical computation. Curr Biol 13: 493-497.
  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Engin 47: 1940-1951.
  • Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural Comput 8: 531-543.
  • Logothetis NK, Sheinberg DL (1996) Visual object recogni¬tion. Annu Rev Neurosci 19: 577-621.
  • Marr D (1971) Simple memory: A theory for archicortex. Proc Royal Soc London B 262: 23-81.
  • McClelland JL, Rumelhart DE, PDP Research Group (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2: Psychological and Biological Models. MIT Press, Cambridge, MA.
  • McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hip¬pocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419-457.
  • McClelland JL (1996) Role of the hippocampus in learning and memory: A computational analysis. In: Perception, Memory and Emotion: Frontier in Neuroscience (Ono T, McNaughton BL, Molotchnikoff S, Rolls ET, Nishijo H, Eds). Elsevier, Oxford, UK.
  • Milner B, Corkin S, Teuber H (1968) Further analysis of the hippocampal amnesic syndrome: 14-years follow-up study of H.M. Neuropsychologia 6: 215-234.
  • O'Reilly RC, Norman KA (2002) Hippocampal and neocor- tical contributions to memory: advances in the comple¬mentary learning systems framework. Trends Cogn Sci 6: 505-510.
  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14: 481-487.
  • Page M (2000) Connectionist modelling in psychology: A localist manifesto. Behav Brain Sci 23: 443-512.
  • Quesney LF, Gloor P (1985) Localization of epileptic foci. Electroencephalogr Clin Neurophysiol Suppl 37: 165¬200.
  • Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435: 1102-1107.
  • Quian Quiroga R, Reddy L, Koch C, Fried I (2007) Decoding visual inputs from multiple neurons in the human tempo¬ral lobe. J Neurophysiol 98: 1997-2007.
  • Quian Quiroga R, Kreiman G, Koch C, Fried I (2008) Sparse but not Grandmother-cell' coding in the medial temporal lobe. Trends Cogn Sci 12: 87-91.
  • Quian Quiroga R, Kraskov A, Koch C, Fried I (2009) Explicit encoding of multimodal percepts by single neu¬rons in the human brain. Curr Biol 19: 1308-1313.
  • Quian Quiroga R, Kreiman G (2010a) Measuring sparseness in the brain: comment on Bowers (2009). Psychol Rev 117: 291-299.
  • Quian Quiroga R, Kreiman G (2010b) Postcript: About grandmother cells and Jennifer Aniston neurons. Psychol Rev 117: 297-299.
  • Quian Quiroga R (2012) Concept cells: The building blocks of declarative memory functions. Nat Rev Neurosci 13: 587-597.
  • Quian Quiroga R, Fried I, Koch C (2013) Brain cells for grandmother. Sci Am 308: 30-35.
  • Raichle ME, Gusnard DA (2002) Appraising the brain's energy budget. Proc Natl Acad Sci U S A 99: 10237-10239.
  • Rolls ET, Treves A (1990) The relative advantages of sparse versus distributed encoding for associative neuronal net¬works in the brain. Network: Comput Neural Syst 1: 407-421.
  • Rolls ET (1992) Neurophysiological mechanisms underly¬ing face processing within and beyond the temporal corti¬cal visual areas. Phil Trans R Soc Lond B 335: 11-21.
  • Rumelhart DE, McClelland JL, Group tPR (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT Press, Cambridge, MA.
  • Saleem KS, Tanaka K (1996) Divergent projections from the anterior inferotemporal area TE to the perirhinal an anto- rhinal cortices in the macaque monkey. J Neurosci 16: 4757-4775.
  • Scoville W, Milner B (1957) Loss of recent memory after bilateral hippocampal lesion. J Neurol Neurosurg Psychiatr 20: 11-21.
  • Sherrington C (1940) Man on His Nature. Cambridge University Press, New York, NY.
  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18: 555-586.
  • Squire L, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380-1386.
  • Squire LR, Stark CEL, Clark RE (2004) The medial tempo¬ral lobe. Annu Rev Neurosci 27: 279-306.
  • Squire L (2009) The legacy of patient H.M. for neurosci¬ence. Neuron 61: 6-9.
  • Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Seminar Neurosciences 8: 3-12.
  • Tanaka K (1996) Inferotemporal cortex and object vision. Ann Rev Neurosci 19: 109-139.
  • Viskontas I, Quian Quiroga R, Fried I (2009) Human medial temporal lobe neurons respond preferentially to personal-ly-relevant images. Proc Natl Acad Sci U S A 106: 21329-21334.
  • Waydo S, Kraskov A, Quian Quiroga R, Fried I, Koch C (2006) Sparse representation in the human medial tempo¬ral lobe. J Neurosci 26: 10232-10234.
  • Wieser HG, Blume WT, Fisch D, Goldensohn E, Hufnagel A, King D, Sperling MR, Luders H (2001) ILAE Commission Report. Proposal for a new classification outcome with respect to epileptic seizures following epi¬lepsy surgery. Epilepsia 42: 282-286.
  • Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222: 960¬962.
  • Young M, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256: 1327¬1331.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.