PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 73 | 4 |

Tytuł artykułu

Gnostic cells in the 21st century

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

In this short review, I revise the notion of gnostic cells posited by Konorski, together with similar arguments by James, Lettvin and Barlow - namely, the idea of pontifical, grandmother and cardinal cells, respectively. I then discuss whether the characteristics of the recently discovered concept cells, i.e. neurons in the human medial temporal lobe with a very high degree of specificity and invariance, fit the conjecture of gnostic or grandmother cells and then discuss the key role of concept cells in memory formation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

73

Numer

4

Opis fizyczny

p.581

Twórcy

autor
  • Centre for Systems Neuroscience. University of Leicester, Leicester, U.K.

Bibliografia

  • Attwell D, Laughlin SB (2001) An energy budget for signal¬ing in the grey matter of the brain. J Cereb Blood Flow Metab 21: 1133-1145.
  • Barlow HB (1953) Summation and inhibition in the frog's retina. J Physiol 119: 69-88.
  • Barlow HB (1972) Single units and sensation: a neuron doc¬trine for perceptual psychology. Perception 1: 371-394.
  • Barlow HB (1994) The neuron doctrine in perception. In: The Cognitive Neurosciences (Gazzaniga M, Ed.) MIT Press, Boston, MA.
  • Barlow HB (1996) Cell assemblies versus single cells. In: Brain Theory - Biological Basis and Computational Principles (Aertsen A, Braitenberg V, Eds). Elsevier, Amsterdam, NL.
  • Barlow HB, Parker A, Singer W, Thorpe S (2009) Barlow's 1972 paper. Perception 38: 795-807.
  • Borges JL (1944) Fictions. Penguin, London, UK.
  • Bowers J (2009) On the biological plausibility of grand¬mother cells: Implications for neural network theories in psychology and neuroscience. Psychol Rev 116: 220¬251.
  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369-384.
  • DeFelipe J, Jones EG (1988) Cajal on the cerebral cortex. Oxford University Press, Oxford, UK.
  • Engel AK, Singer W (2001) Temporal binding and the neu¬ral correlates of sensory awareness. Trends Cogn Sci 5: 16-25.
  • Engel AK, Moll CKE, Fried I, Ojermann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6: 35-47.
  • Freud S (1953) Project for a Scientific Psychology (1895), The Standard Edition of the Complete Psychological Works of Sigmund Freud. Hogarth Press, London, UK.
  • Fried I, MacDonald KA, Wilson CL (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18: 753-765.
  • Fried I, Wilson CL, Maidment NT, Engel J, Behnke E, Fields TA, MacDonald KA, Morrow JW, Ackerson L (1999) Cerebral microdialysis combined with single¬neuron and electroencephalographs recording in neuro- surgical patients - Technical note. Journal of Neurosurgery 91: 697-705.
  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar syn-chronization which reflects global stimulus properties. Nature 338: 334-337.
  • Gross C (1992) Representation of visual stimuli in inferior termporal cortex. Phil Trans R Soc Lond B 335: 3-10.
  • Gross C (2002) Genealogy of the "Grandmother Cell". The Neuroscientist 8: 512-518.
  • Gross C (2008) Single neuron studies of inferior temporal cortex. Neuropsychologia 46: 841-852.
  • Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166: 1303-1306.
  • Harris CS (1980) Insight or out of sight? Two examples of perceptual plasticity in the human adult. In: Visual Coding and Adaptability (Harris CS, Ed.) Erlbaum, Hillsdale, NJ.
  • Hebb DO (1949) The Organization of Behavior. John Wiley & Sons, New York, NY.
  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79: 2554-2558.
  • Hubel D, Wiesel TN (1959) Receptive fields of single neu¬rones in the cat's striate cortex. J Physiol 148: 574¬591.
  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160: 106-154.
  • Hubel D, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229-289.
  • Hubel DH, Wiesel TN (1968) Receptive fields and func¬tional architecture of monkey striate cortex. J Physiol 195: 215-243.
  • Hung C, Kreiman G, Poggio T, DiCarlo J (2005) Fast read¬out of object information in inferior temporal cortex. Science 310: 863-866.
  • Ison M, Quian Quiroga R (2008) Selectivity and invariance for visual object perception. Front Biosci 13: 4889¬4903.
  • James W (1890) The Principles of Psychology. Cosmo clas¬sics, New York, NY.
  • Konorski J (1967) Integrative Activity of the Brain: An Interdisciplinary Approach. University of Chicago Press, Chicago, IL.
  • Kreiman G, Koch C, Fried I (2000a) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3: 946-953.
  • Kreiman G, Koch C, Fried I (2000b) Imagery neurons in the human brain. Nature 408: 357-361.
  • Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity of local field poten¬tials and spikes in the macaque inferior temporal cortex. Neuron 49: 433-445.
  • Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10: 420-430.
  • Lennie P (2003) The cost of cortical computation. Curr Biol 13: 493-497.
  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Engin 47: 1940-1951.
  • Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural Comput 8: 531-543.
  • Logothetis NK, Sheinberg DL (1996) Visual object recogni¬tion. Annu Rev Neurosci 19: 577-621.
  • Marr D (1971) Simple memory: A theory for archicortex. Proc Royal Soc London B 262: 23-81.
  • McClelland JL, Rumelhart DE, PDP Research Group (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2: Psychological and Biological Models. MIT Press, Cambridge, MA.
  • McClelland JL, McNaughton BL, O'Reilly RC (1995) Why there are complementary learning systems in the hip¬pocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419-457.
  • McClelland JL (1996) Role of the hippocampus in learning and memory: A computational analysis. In: Perception, Memory and Emotion: Frontier in Neuroscience (Ono T, McNaughton BL, Molotchnikoff S, Rolls ET, Nishijo H, Eds). Elsevier, Oxford, UK.
  • Milner B, Corkin S, Teuber H (1968) Further analysis of the hippocampal amnesic syndrome: 14-years follow-up study of H.M. Neuropsychologia 6: 215-234.
  • O'Reilly RC, Norman KA (2002) Hippocampal and neocor- tical contributions to memory: advances in the comple¬mentary learning systems framework. Trends Cogn Sci 6: 505-510.
  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14: 481-487.
  • Page M (2000) Connectionist modelling in psychology: A localist manifesto. Behav Brain Sci 23: 443-512.
  • Quesney LF, Gloor P (1985) Localization of epileptic foci. Electroencephalogr Clin Neurophysiol Suppl 37: 165¬200.
  • Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435: 1102-1107.
  • Quian Quiroga R, Reddy L, Koch C, Fried I (2007) Decoding visual inputs from multiple neurons in the human tempo¬ral lobe. J Neurophysiol 98: 1997-2007.
  • Quian Quiroga R, Kreiman G, Koch C, Fried I (2008) Sparse but not Grandmother-cell' coding in the medial temporal lobe. Trends Cogn Sci 12: 87-91.
  • Quian Quiroga R, Kraskov A, Koch C, Fried I (2009) Explicit encoding of multimodal percepts by single neu¬rons in the human brain. Curr Biol 19: 1308-1313.
  • Quian Quiroga R, Kreiman G (2010a) Measuring sparseness in the brain: comment on Bowers (2009). Psychol Rev 117: 291-299.
  • Quian Quiroga R, Kreiman G (2010b) Postcript: About grandmother cells and Jennifer Aniston neurons. Psychol Rev 117: 297-299.
  • Quian Quiroga R (2012) Concept cells: The building blocks of declarative memory functions. Nat Rev Neurosci 13: 587-597.
  • Quian Quiroga R, Fried I, Koch C (2013) Brain cells for grandmother. Sci Am 308: 30-35.
  • Raichle ME, Gusnard DA (2002) Appraising the brain's energy budget. Proc Natl Acad Sci U S A 99: 10237-10239.
  • Rolls ET, Treves A (1990) The relative advantages of sparse versus distributed encoding for associative neuronal net¬works in the brain. Network: Comput Neural Syst 1: 407-421.
  • Rolls ET (1992) Neurophysiological mechanisms underly¬ing face processing within and beyond the temporal corti¬cal visual areas. Phil Trans R Soc Lond B 335: 11-21.
  • Rumelhart DE, McClelland JL, Group tPR (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT Press, Cambridge, MA.
  • Saleem KS, Tanaka K (1996) Divergent projections from the anterior inferotemporal area TE to the perirhinal an anto- rhinal cortices in the macaque monkey. J Neurosci 16: 4757-4775.
  • Scoville W, Milner B (1957) Loss of recent memory after bilateral hippocampal lesion. J Neurol Neurosurg Psychiatr 20: 11-21.
  • Sherrington C (1940) Man on His Nature. Cambridge University Press, New York, NY.
  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18: 555-586.
  • Squire L, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380-1386.
  • Squire LR, Stark CEL, Clark RE (2004) The medial tempo¬ral lobe. Annu Rev Neurosci 27: 279-306.
  • Squire L (2009) The legacy of patient H.M. for neurosci¬ence. Neuron 61: 6-9.
  • Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Seminar Neurosciences 8: 3-12.
  • Tanaka K (1996) Inferotemporal cortex and object vision. Ann Rev Neurosci 19: 109-139.
  • Viskontas I, Quian Quiroga R, Fried I (2009) Human medial temporal lobe neurons respond preferentially to personal-ly-relevant images. Proc Natl Acad Sci U S A 106: 21329-21334.
  • Waydo S, Kraskov A, Quian Quiroga R, Fried I, Koch C (2006) Sparse representation in the human medial tempo¬ral lobe. J Neurosci 26: 10232-10234.
  • Wieser HG, Blume WT, Fisch D, Goldensohn E, Hufnagel A, King D, Sperling MR, Luders H (2001) ILAE Commission Report. Proposal for a new classification outcome with respect to epileptic seizures following epi¬lepsy surgery. Epilepsia 42: 282-286.
  • Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222: 960¬962.
  • Young M, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256: 1327¬1331.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c527f709-9afb-40fe-8b37-c42cd9451e3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.