PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 3 |

Tytuł artykułu

Identification and assessment of genetic similarity of soil bacterial isolates of Pseudomonas spp. using molecular techniques

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bacteria of the genus Pseudomonas are often components of bioproducts designed to enhance the condition of the soil and plants. The use of Pseudomonas bacteria in bioproducts must be preceded by the acquisition, characterization and selection of beneficial strainsliving in the soil. A prerequisite for the selection of bacterial strains for use in bioproducts is to be able to identify the isolates rapidly and accurately. To identify and differentiate 15 bacterial isolates obtained from the soil surrounding the roots of sour cherry trees and to assess their genetic similarity, the rep-PCR technique and restriction analysis of the 16S rRNA gene and the 16S-ITS-23S rRNA operon were used. In addition, a sequence analysis of the 16S rRNA gene was performed. The analyses made it possible to divide the isolates into four clusters and to confirm their affiliation with the Pseudomonas species. RFLP analysis of the 16S-ITS-23S rRNA operon enabled greater differentiation of the isolates than RFLP of the 16S rRNA gene. The greatest differentiation of isolates within the clusters was obtained after using the rep-PCR technique. However, none of the techniques was able to discriminate all the isolates, which indicates very high genetic similarity of the Pseudomonas isolates found in the same sample of soil from around the roots of sour cherry trees. The tests performed will find application for distinguishing and identifying Pseudomonas strains collected from the soil in order to select the most valuable bacterial strains that produce beneficial effects on plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.291-298,fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Bibliografia

  • Abd-El-Haleem D., A.C. Dayton and G.S. Sayler. 2002. Long PCR-amplified rDNA for PCR-RFLP- and Rep-PCR-based approaches to recognize closely related microbial species. J. Microbiol. Meth. 49: 315–319.
  • Adiguzel A., H. Ozkan, O. Baris, K. Inan, M. Gulluce and F. Sahin. 2009. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J. Microbiol. Meth. 79: 321–328.
  • Aquilanti L., F. Favilli and F. Clementi. 2004a. Comparison of different strategies for isolation and preliminary idntification of Azotobacter from soil samples. Soil Biol. Biochem. 36: 1475–1483.
  • Aquilanti L., I. Mannazzu, R. Papa, L. Cavalca and F. Clementi. 2004b. Amplified ribosomal DNA restriction analysis for the characterization of Azotobacteraceae: a contribution to the study of these free-living nitrogen-fixing bacteria. J. Microbiol. Meth. 57: 197–206.
  • Cámara B., C. Strömpl, S. Verbarg, C. Spröer, D.H. Pieper and B.J. Tindall. 2007. Pseudomonas reinekei sp. Nov., Pseudomonas moorei sp. Nov. and Pseudomonas mohnii sp. Nov., novel species capable of degrading chlorosalicylates or isorimaric acid. Int. J. Syst. Evol. Microbiol. 57: 923–931.
  • Charbonneau D.M., F. Meddeb-Mouelhi, M. Boissinot, M. Sirois and M. Beauregard. 2012. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost. Indian J. Microbiol. 52: 41–47.
  • Choudhary K.D., A. Prakash, V. Wray and B.N. Johri. 2009. Insights of the fluorescent pseudomonads in plant growth regulation. Curr. Sci. India 97: 170–179.
  • Esitken A., L. Pirlak, M. Turan and F. Sahin. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic. Amsterdam 110: 324–327.
  • Franzetti L. and M. Scarpellini. 2007. Characterisation of Pseudomonas spp. isolated from foods. Ann. Microbiol. 57: 39–47.
  • Gevers D., G. Huys and J. Swings. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205: 31–36.
  • Gould W.D., C. Hagedorn, T.R. Bardinelli and R.M. Zablotowicz. 1985. New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl. Environ. Microbiol. 49: 28–32.
  • Ishii S. and M.J. Sadowsky. 2009. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environ. Microbiol. 11: 733–740.
  • Jayarao B.M., J.T. Dore and S.P. Oliver. 1992. Restriction fragment length polymorphism analysis of 16S ribosomal DNA of Streptococcus and Enterococcus species of bovine origin. J. Clin. Microbiol. 30: 2235–2240.
  • Kaluzna M., P. Ferrante, P. Sobiczewski and M. Scortichini. 2010. Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. J. Plant. Pathol. 92: 781–787.
  • Karakurt H., R. Kotan, F. Dadaşoğlu, R. Aslantaş and F. Şahin. 2011. Effects of plant growth promoting rhizobacteria on fruit set, pomological and chemical characteristics, color values, and vegetative growth of sour cherry (Prunus cerasus cv. Kütahya). Turk. J. Biol. 35 283–291. Doi:10.3906/biy-0908-35
  • Lane D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In: Stackebrandt E. and M. Goodfellow (eds). Nucleic acid techniques in bacterial systermatics. John Wiley & Sons Ltd, Chichester, United Kingdom.
  • Lisek A., L. Sas Paszt, M. Oskiera, P. Trzciński, A. Bogumił, A. Kulisiewicz and E. Malusá. 2011. Use of the rep-PCR technique for differentiating isolates of rhizobacteria. J. Fruit Ornam. Plant Res. 19: 5–12.
  • Louws F.J., D.W. Fulbright, C. Taylor Stephens and F.J. De Bruijn. 1994. Specific Genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 7: 2268–2295.
  • Mavrodi O.V., B.B. McSpadden Gardener, D.V. Mavrodi, R.F. Bonsall, D.M. Weller and L.S. Thomashow. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91: 35–43.
  • McSpadden Gardener B.B., K.L. Schroeder, S.E. Kalloger, J.M. Raaijmakers, L.S. Thomashow and D.M. Weller. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66: 1939–1946.
  • Meintanis C., K.I. Chalkou, K.Ar. Kormas, D.S. Lymperopoulou, E.A. Katsifas, D.G. Hatzinikolaou and A.D. Karagouni. 2008. Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett. Appl. Microbiol. 46: 395–401.
  • Mulet M., Z. David, B. Nogales, R. Bosch, J. Lalucat and E. García- Valdés. 2011. Pseudomonas diversity on crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl. Environ. Microbiol. 2011: 1076–1085.
  • Rana A., B. Saharan, M. Joshi, R. Prasanna, K. Kumar and L. Nain. 2011. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 61: 893–900.
  • Scarpellini M., L. Franzetti and A. Galli. 2004. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol. Lett. 236: 257–260.
  • Scortichini M., U. Marchesi, M.P. Rossi, L. Angelucci and M.T. Dettori. 2000. Rapid identification of Pseudomonas avellanae field isolates, causing hazelnut decline in Central Italy, by repetitive PCR genomic fingerprinting. J. Phyopathol. 148: 153–159.
  • Susilowati A., A.T. Wayhudi, Y. Lestar, S. Wiyono and A. Suwanto. 2010. Genetic diversity of antifungi-producing rhizobacteria of Pseudomonas sp. isolated from rhizosphere of soybean plant. Microbiol. Indones. 4: 33–38.
  • Trček J. and M. Teuber. 2002. Genetic and restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol. Lett. 208: 69–75.
  • Weller D.M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97: 250–256.
  • Yang J-H., H-X Liu, G-M Zhu, Y-L Pan, L-P Xu and J-H Guo. 2008. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J. Appl. Microbiol. 104: 91–104.
  • Yavuz E., H. Gunes, C. Bulut, S. Harsa and A.F. Yenidunya. 2004. RFLP of 16S-ITS rDNA region to differentiate Lactobacilli at species level. World J. Microb. Biot. 20: 535–537.
  • Zamioudis C., P. Mastranesti, P. Dhonukshe, I. Blilou and C.M.J. Pieterse. 2013. Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria. Plant Physiol. 162: 304–318.
  • Zeng Y.H., M. Koblížek, Y-X Li, Y.P. Liu, F.Y. Feng, J.D. Ji, J.C Jian and Z.H. Wu. 2012. Long PCR-RFLP of 16S-ITS-23S rRNA genes: a high-resolution molecular tool for bacterial genotyping. J. Appl. Microbiol. 114: 433–447.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c518e752-8d68-4b30-8b48-8e7865c87572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.