Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 4 |
Tytuł artykułu

The role of Pseudomonas strains and arbuscular mycorrhiza fungi as organic phosphate-solubilizing in the yield and quality improvement of strawberry (Fragaria × ananassa Duch., cv. Selva) fruit

Warianty tytułu
Języki publikacji
This study evaluated the effect of Pseudomonas strains and arbuscular mycorrhiza fungi (AMF) in enhancing strawberry yield and phenolic and antioxidant capacity on a phosphorus (P) deficient calcareous soil. The experiments were conducted in three replicates with six treatments (four Pseudomonas strains, AMF and control) and three rates of P-fertilizer (0, 75, 150 kg P ha–1). Application of higher phosphate rates decreased total antioxidant capacity, total phenolic and flavonols content, whereas AMF and Pseudomonas strains increased quality and P concentration of fruit. The use of AMF and Pseudomonas strains resulted in better quality when used along with 75 kg P ha–1. These results demonstrated that the rhizospheric microorganisms improved the quality of fruit, especially when they applied in combination with lower rates of chemical fertilizers. Therefore, application of these microorganisms in sustainable agriculture is recommended.
Opis fizyczny
  • Department of Agronomy and Plant Breeding, Rasht Branch, Islamic Azad University, Rasht, Iran
  • Department of Horticulture Science, Rasht Branch, Islamic Azad University, Rasht, Iran
  • Department of Horticulture Science, Rasht Branch, Islamic Azad University, Rasht, Iran
  • Department of Horticulture Science, Rasht Branch, Islamic Azad University, Rasht, Iran
  • Adesemoye, A.O., Kloepper, J.W. (2009). Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol., 85(1), 1–12.
  • Ahmad F., Ahmad, I., Khan, M.S. (2008). Screening of freeliving rhizospheric bacteria for their multiple plant growthpromoting activities. Microbiol. Res., 163, 173–181.
  • Alishahi, F., Alikhani, H.A., Heidari, A., Mohammadi, L. (2013). The study of inorganic insoluble phosphate solubilization and other plant growth promoting characteristics of indigenous Pseudomonas fluorescens bacteria of Kordan and Gonbad regions. Intl. J. Agron. Agric. Res., 3, 53–60.
  • Amanullah, A. Khan, A. (2015). Phosphorus and compost management influence maize (Zea mays) productivity under semiarid condition with and without phosphate solubilizing bacteria. Front Plant Sci., 6, 1083–1090.
  • Bagel, S.D., Shaikh, G.A., Adsule R.N. (1989). Influence of different levels of N, P and K fertilizers on the protein, ascorbic acid, sugars and mineral contents. J. Maharashtra Agric. Univ., 14(2), 153–155.
  • Baslam, M., Esteban, R., García-Plazaola, J.I. Goicoechea, N. (2013). Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl. Microbiol. Biotechnol., 97, 3119–3128.
  • Bona, E., Lingua, G., Manassero, P., Cantamessa, S., Marsano, F., Todeschini, V., Copetta, A., D’Agostino, G., Massa, N., Avidano, L., Gamalero, E. (2015). AM fungi and PGP Pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza, 25(3), 181–193.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 25−30.
  • Castellanos-Morales, V., Villegas, J., Wendelin, S., Vierheilig, H., Eder, R., Cardenas-Navarro, R. (2010). Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch) at different nitrogen levels. J. Sci. Food Agric., 90, 1774–1782.
  • Chamam A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dye, F., Bertrand, C., Prigent-Combaret, C. (2013). Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa assotiation. Phytochemistry, 87, 65–77.
  • Chen, Y.P., Rekha, P.D., Arunshen, A.B., Lai, W.A., Young, C.C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Apple. Soil Ecol., 34, 33–41.
  • Copetta, A., Bardi, L., Bertolone, E., Berta, G. (2011). Fruit production and quality of tomato plants (Solanum lycopersicum L) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst., 145, 106–115.
  • De Brito Alvarez, M.A., Gagne, S., Antoun, H. (1995). Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl. Environ. Microbiol., 61(1), 194–199.
  • Erturk, Y., Ercilsi, S., Cakmakci, R. (2012). Yield and growth response of strawberry to plant growth promoting rhizobacteria inoculation. J. Plant Nutr., 35, 817–826.
  • Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M., Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and n utrient contents of organically grown strawberry. Sci. Hortic., 124, 62– 66.
  • Ghaderi, A., Aliasgharzad, N., Oustan, S., Olsson, P.A. (2008). Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable charge mineral (iron III hydroxide). Soil Environ., 27, 71–76.
  • Gianinazzi, S., Gollotte, A., Binet, M., Van Tuinen, D., Redecher, D., Wipf, D. (2010). The role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519– 530.
  • Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41, 109–117.
  • Glick, B.R., Liu, C., Ghosh, S., Dumbroff, E.B. (1997). Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem., 29, 1233–1239.
  • Goldstein, A.H. (1986). Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am. J. Altern. Agric., 1, 51–57.
  • Gryndler, M., Vosatka, M., Hrselova, H., Catska, V., Chvatalova, I., Jansa, J. (2002). Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J. Plant Nutr., 25, 1341– 1358.
  • Güneş, A., Ataoğlu, N., Turan, M., Eşitken, A., Ketterings, Q.M. (2009). Effects of phosphate‐solubilizing microorganisms on strawberry yield and nutrient concentrations. J. Plant Nutr. Soil Sci., 172(3), 385–392.
  • Habte, M., Fox, R.L. (1993) Effectiveness of vam fungi in nonsterile soil before and after optimization of P in soil solution. Plant Soil, 151, 219–226.
  • Hamilton, M.A., Westermann, D.T., James, D.W. (1993). Factors affecting Zn uptake in cropping systems. Soil Sci. Soc. Am. J., 57, 1310–1315.
  • Han, H.S., Supanjani, D., Kee, K.D. (2006). Effect of coinoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ., 52(3),130–136.
  • Hertog, M.G.L., Hollman, P.C.H., Venema, D.P. (1992). Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Sci. Food Agric., 40, 1591–1598.
  • Ipek, M., Pirlak, L., Esitken, A., Figen Dönmez, M., Turan, M., Sahin, F. (2014). Plant Growth-Promoting Rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J. Plant Nutr., 37(7), 990–1001.
  • Karimi, K., Bolandnazar, S.A., Ashoori, S. (2013). Effect of bio-fertilizer and arbuscular mycorrhizal fungi on yield, growth characteristics and quality of green eban (Phaseolous vulgaris L.). J. Sustain. Agric. Prod. Sci., 23(3), 157–167 [in Persian].
  • Jackson, M. L. 1958. Soil Chemical Analysis. Englewood Cliffs: Prentice Hall, Inc. Karlidag, H., Yildirim, E., Turan, M., Donmez, F. (2011). Effect of plant growth promoting bacteria on minearlorganic fertilizer use efficiency, plant growth and mineral contents of strawberry (Faragria × ananassa L Duch). Ind. J. Biotechnol., 9, 289–297.
  • Khaligh, A., Sandres, F.E. (2000). Effects of verciculararbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. Soil Biol. Biochem., 32, 1641–1696.
  • Khan, K.S., Joergensen, R.G. (2009). Changes in microbial biomass and P fraction in biogenic bousehold waste compost amended with inorganic P fertilizers. Bioresour. Technol., 100, 303–309.
  • Khaosaad, T., Krenn, L., Medjakovic, S., Ranner, A., Lössl, A., Nell, M., Jungbauer, A., Vierheilig, H. (2008). Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J. Plant Physiol., 165, 1161–1167.
  • Kochain, L.V. (1991). Mechanisms of micronutrient uptake and translocation in plant. In: Micronutrient in agriculture, Mortvelt, J.J., Cox, F.R., Shuman, L.M., Welch, R.M. (eds). 2nd ed., Soil Science Society of America, Madison, WL, 229–285.
  • Lingua, G., Bona, E., Manassero, P., Marsano, F., Todeschini, V., Cantamessa, S., Copetta, A., D’Agostino, G., Gamalero, E., Berta, G. (2013). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria × ananassa var Selva) in conditions of reduced fertilization. Int. J. Mol. Sci., 14, 16207–16225.
  • Liu, M., Li, X.Q., Weber, C., Lee, C.Y., Brown, J., Liu, R.H. (2002). Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem., 50, 2926–2930.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with Folin-phenol reagent. J. Biol. Chem., 193(1), 265–275.
  • Milivojević, J., Maksimović, V., Nikolić, M., Bogdanović, J., Maltić, R., Milatović, D. (2011). Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J. Food Qual., 34, 1–9.
  • Mukerji, K.G., Manohara Chary, C., Chamola, B.P. (2002). Techniques in mycorrhizal studies. Kluwer Academic Publishers, Dordrecht. Ohki, K. (1984). Manganese deficiency and toxicity effects on growth, development, and nutrient composition in wheat. Agron. J., 76, 212–218.
  • Panigrahi, K., Eggen, M., Maeng, J.H., Shen, Q., Berkowitz, D.B. (2009). The α, α-difluorinated phosphonate LpSer-analogue, an accessible chemical tool for studying kinase-dependent signal transduction. Chem. Biol., 16(9), 928–936.
  • Pantelidis, E.G., Vasilakakis, M., Manganaris, A.G., Diamantidis, G. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem., 102, 777–783.
  • Patten, C.L, Glick, B.R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68(8), 3795– 3801.
  • Penrose, D.M., Glick, B.R. (2003). Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol. Plant., 118(1), 10–15.
  • Pešaković, M., Milenković, S., Đukić, D., Mandić, L., Karaklajić-Stajić, Ž., Tomić, J., Miletić, N. (2016). Phenolic composition and antioxidant capacity of integrated and conventionally grown strawberry (Fragaria × ananassa Duch). Hort. Sci., 43(1), 17–24.
  • Reganold, J.P., Andrews, P.K., Reeve, J.R., CarpenterBoggs, L., Schadt, C.W., Alldredge, J.R., Ross, C.F., Davies, N.M. Zhou, J. (2010). Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE, 5(10), 10.1371.
  • Rudresha, D.L., Shivaprakasha, M.K., Prasad, R.D. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L). Appl. Soil Eco., 28, 139–146.
  • Sanchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 79, 270–276.
  • Schwyn, B., Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 160(1), 47–56.
  • Shaharoona, B., Naveed, M., Arsahd, M., Zahir, A. (2008). Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L). Appl. Microbiol. Biotechnol., 79, 147–155.
  • Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A. (2013). Phosphate solubilizing microbes, sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2, 587.
  • Smith, S., Read, D. (2008). Mycorrhizal Symbiosis, 3rd ed. Academic Press, London. Tomic, J.M., Milivojevic, J.M., Pesakovic, M.I. (2015). The response to bacterial inoculation is cultivar-related in strawberries. Turk. J. Agric. Forest, 39(2), 332–341.
  • Turan, M., Ataoglu, N., Sezen, Y. (2004). Effects of phosphorus solubilizing bacteria (Bacillus megaterium) on yield and phosphorus contents of tomato plant (Lycopersicon esculentum L). Proceedings of the National Fertilizer Congress Farming-IndustryEnvironment, 11–13 October,
  • Tokat, Turkey. Van de Mortel, J., De Vos, R., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K., Van Loon, J., Dicke, M., Raaijmakers, J. (2012). Metabolic and transcriptomic changes induced in arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol., 160, 2173–2188.
  • Vassileva, M., Serrano, M., Bravo, V., Jurado, E., Nikolaeva, I., Martos, V., Vassilev, N. (2010). Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl. Microbiol. Biotechnol., 85, 1287–1299.
  • Walpola, B.C., Yoon, M.H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils, A review. Afr. J. Microbiol. Res., 6(37), 6600–6605.
  • Zaidi, A., Khan, M.S. (2006). Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram Bradyrhizobium symbiosis. Turk. J. Agric. Forest, 30, 223–230.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.