Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 5 |
Tytuł artykułu

Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis

Warianty tytułu
Języki publikacji
Procedure for the Agrobacterium tumefaciens mediated T-DNA delivery into the elite clone(s) of Eucalyptus tereticornis using leaf explants from microshoots has been developed. Amongst two strains of A. tumefaciens namely, EHA105 and LBA4404 (harbouring pBI121 plasmid), strain EHA105 was found to be more efficient. Pre-culturing of tissue (2 days) on medium supplemented with 100 µM acetosyringone, before bacterial infection significantly increased transient expression of reporter gene (GUS). Co-cultivation period of 2 days and a bacterial density of 0.8 OD600 resulted in higher transient GUS expression. Method of injury to tissue, presence of acetosyringone in co-cultivation medium and photoperiod during co-cultivation also influenced the expression of transient GUS activity. Amongst the three clones tested, maximum transient GUS activity was recorded in clone ‘CE2’ followed by clone ‘T1’. Regeneration of transformed shoots was achieved on modified Murashige and Skoog medium (potassium nitrate was replaced with 990 mg/l potassium sulphate and ammonium nitrate with 392 mg/l ammonium sulphate, and mesoinositol concentration was increased to 200 mg/l). Stable transformation was confirmed on the basis of GUS activity and PCR amplification of DNA fragments specific to uidA and nptII genes. The absence of bacteria in the stable transformed tissues was confirmed by PCR amplification of fragment specific to 16S rRNA of bacteria.
Słowa kluczowe
Opis fizyczny
  • Department of Biotechnology and Environmental Sciences, TIFAC-Center of Relevance and Excellence in Agro and Industrial Biotechnology, Thapar University, Patiala, 147004, India
  • Department of Biotechnology and Environmental Sciences, TIFAC-Center of Relevance and Excellence in Agro and Industrial Biotechnology, Thapar University, Patiala, 147004, India
  • Department of Biotechnology and Environmental Sciences, TIFAC-Center of Relevance and Excellence in Agro and Industrial Biotechnology, Thapar University, Patiala, 147004, India
  • Aggarwal D, Kumar A, Reddy MS (2010) Shoot organogenesis from elite plants of Eucalyptus tereticornis. Plant Cell Tissue Organ Cult 102:45–52
  • Alvarez R, Ordas RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tissue Organ Cult 91:45–52
  • Barrueto CID LP, Machado ACM, Carvalheira SRC, Brasieleiro ACM (1999) Plant regeneration from seedling explants of Eucalyptus grandis × E. urophylla. Plant Cell Tissue Organ Cult 56:17–23
  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Ann Rev Microbiol 42:575–606
  • Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust Syst Bot 13:79–148
  • Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric (Piracicaba, Braz) 62:406–412
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. ‘‘Thompson Seedless’’ via Agrobacterium-mediated transformation. Plant Cell Rep 26(12):2101–2110
  • Gelvin SB (2005) Agricultural biotechnology gene exchange by design. Nature 433:583–584
  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effect of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675
  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics from gene sequences to breeding tools. New Phytol 179(4):911–929
  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680
  • Hoekema A, Hirsch PR, Schilperoort PJJ, Hooykaas RA (1983) A binary vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180
  • Holsters M, De Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187
  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218
  • Ivanova M, Van Staden J (2009) Nitrogen source, concentration, and NH₄⁺:NO₃⁻ ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell Tissue Organ Cult 99:167–174
  • James DJ, Uratsu S, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmo-protectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563
  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
  • Jube S, Borthakur D (2009) Development of an Agrobacterium mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tissue Organ Cult 96:325–333
  • Lopez SJ, Kumar RR, Pius PK, Muralidharan N (2004) Agrobacterium tumefaciens–mediated genetic transformation in Tea (Camellia sinensis [L.] O. Kuntze). Plant Mol Biol Rep 22:201a–201j
  • Luna C, Collavino M, Mroginski L, Sansberro P (2008) Identification and control of bacterial contaminants from Ilex dumosa nodal segments culture in a temporal immersion bioreactor system using 16S rDNA analysis. Plant Cell Tissue Organ Cult 95:13–19
  • Maheswaran GM, Welander M, Hutchinson JF, Graham MW, Richards D (1992) Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J Plant Physiol 139:560–568
  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143
  • Mullins KV, Llewellyn DJ, Hartney VJ, Strauss SH, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16:787–791
  • Murashige T, Skooge F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Niu X, Li X, Veronese P, Hasegawa PM, Bressan RA, Weller SC (2000) Factors affecting Agrobacterium tumefaciens-mediated transformation of peppermint. Plant Cell Rep 19:304–310
  • Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001) Adventitious bud induction in Eucalyptus globulus Labill. In Vitro Cell Dev Biol Plant 37:388–391
  • Padmanabhan P, Sahi SV (2009) Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes. Plant Cell Rep 28:31–40
  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotech 19(12):500–506
  • Pinto G, Park YS, Silva S, Neves L, Araujo C, Santos C (2008) Factors affecting maintenance, proliferation and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell Tissue Organ Cult 95:69–78
  • Prakash MG, Gurumurthi K (2009) Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. Using Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 45:429–434
  • Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol Plant 38:116–124
  • Sangwan RS, Bourgoies Y, Brow S, Vasseur G, Sangwan-Norreel BS (1992) Characterization of competent cells and early events of Agrobacterium-mediated transformation of Arabidopsis thaliana. Planta 188:439–456
  • Serrano L, Rochange F, Semblat JP, Marque C, Teulières C, Boudet AM (1996) Genetic transformation of Eucalyptus globulus through biolistics parallel development of procedures for organogenesis from zygotic embryos and stable transformation of corresponding proliferating tissue. J Exp Bot 47(295):285–290
  • Sonia, Saini R, Singh RP, Jaiswal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean: Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198
  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629
  • Stachel SE, Nester EW, Zambryski P (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83:379–383
  • Subbaiah MM, Minocha SC (1990) Shoot regeneration from stem and leaf callus of Eucalyptus tereticornis. Plant Cell Rep 9:370–373
  • Sun SB, Meng LS (2010) Genetic transformation of Gentiana dahurica Fisch by Agrobacterium tumefaciens using zygotic embryo derived callus. Acta Physiol Plant 32:629–634
  • Tazawa M, Reinert J (1969) Extracellular and intracellular chemical environments in relation to embryogenesis in vitro. Protoplasma 68:157–173
  • Terakami S, Matsuta N, Yamamoto T, Sugaya S, Gemma H, Soejima J (2007) Agrobacterium-mediated transformation of the dwarf pomegranate (Punica granatum L.). Plant Cell Rep 26:1243–1251
  • Thomas P, Kumari S, Swarna GK, Prakash DP, Dinesh MR (2007) Ubiquitous presence of fastidious endophytic bacteria in field shoots and index-negative apparently clean shoot-tip cultures of papaya. Plant Cell Rep 26:1491–1499
  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Transgenic Res 12:403–411
  • Turnbull JW (1999) Eucalypt plantations. New For 17:37–52
  • Weisburg WA, Barns SM, Pelletier DA, Lane DJ (1991) 16S rDNA amplification for phylogenetic study. J Bacteriol 173:697–703
  • Yasmeen A (2009) An improved protocol for the regeneration and transformation of tomato (cv Rio Grande). Acta Physiol Plant 31:1271–1277
  • Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29:211–229
  • Zambre M, Terryn N, Clercq JD, De Buck S, Dillen W, Montagu MV, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216:580–586
  • Zuker A, Ahroni A, Tzfira T, Meir HB, Vainstein A (1999) Wounding by bombardment yields highly yields highly efficient Agrobacterium- mediated transformation of carnation (Dianthus caryophyllus L.). Mol Breed 5:367–375
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.