PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Influence of exopolysaccharide-producing bacteria and SiO2 nanoparticles on proline content and antioxidant enzyme activities of tomato seedlings (Solanum lycopersicum L.) under salinity stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A greenhouse experiment was conducted to evaluate the effects regarding inoculation of exopolysaccharide (EPS)-producing bacterium, the extracted EPS and silicon nanoparticles on Solanum lycopersicum L. seeds under salinity stress, in a completely randomized factorial design with three replicates. The inoculated seeds with silicon nanoparticles (8 gr L⁻¹), bacterial EPS (0.01 M), and 1 mL of bacterial suspension (1×10⁸ CFU mL⁻¹) were sown in pots and irrigated with water at different salinity levels (0.3, 2, 4, 6, and 8 dS m⁻¹). Results showed that treatment application could enhance salinity tolerance of tomato seeds and improve plant growth so that combined treatments of EPS and silicon nanoparticles (S.E.N), bacteria and silicon nanoparticles (S.B.N), and EPS with silicon nanoparticles and bacteria (S.E.B.N) were the best treatments for plant growth and improvement regarding salinity levels. The mentioned treatments significantly (p<0.01) increased root and shoot fresh or dry weight in comparison to the control sample. In addition, treatments significantly (p<0.01) decreased proline content and antioxidant enzyme activities. Thus, it can be concluded that applied treatments are suitable for agricultural and environmental applications and bring about less damage caused by salinity stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.153-163,fig.,ref.

Twórcy

  • Isfahan (Khorasgan) Branch, Department of Soil Sciences, Islamic Azad University, Isfahan, Iran
  • Isfahan (Khorasgan) Branch, Department of Basic Medical Sciences, Islamic Azad University, Isfahan, Iran
  • Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
autor
  • Isfahan (Khorasgan) Branch, Department of Soil Sciences, Islamic Azad University, Isfahan, Iran
  • Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
autor
  • Isfahan (Khorasgan) Branch, Department of Soil Sciences, Islamic Azad University, Isfahan, Iran
  • Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
autor
  • Isfahan (Khorasgan) Branch, Department of Soil Sciences, Islamic Azad University, Isfahan, Iran

Bibliografia

  • 1. KALTEH M., TAJ ALIPOUR Z., ASHRAF SH., MARASHI ALIABADI M., NOSRATABADI A.F. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. JCHR, 4, 49, 2014.
  • 2. LAISKHANOW S.U., OTAROV A., SAVIN I.Y., TANIRBERGENOV S.L., MAMUTOV Z.U., DUISEKOV S.N., ZHOGOLEV A. Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan. Pol. J. Environ. Stud, 25, 2469, 2016.
  • 3. ASHRAF M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv, 27, 84, 2009.
  • 4. NEMAT M.A., AZZA SH.T., MAGDI T.A., MAGDY A. Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. JASR, 8, 2033, 2012.
  • 5. FAHRAMAND M., MAHMOODY M., KEYKHA A., NOORI M., RIGI KH. Influence of abiotic stress on proline, photosynthetic enzymes and growth. Intl. Res. J. Appl. Basic. Sci, 8, 257, 2014.
  • 6. CHAWLA S., JAIN S., JAIN V. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryzasativa L.). J Plant Biochem Biotechnol, 22, 27, 2013.
  • 7. CHADHO K., RAJENDER G. Advance in Horticulture Medicinal and Aromatic Plants. 11th ed.; New Delhi, Malhotra Publishing House, pp. 935, 1995.
  • 8. AL-HARBI A.R., WAHB-ALLAH M.A., ABU-MORIEFAH S.S. Salinity and nitrogen level affects germination, emergence and seedling growth of tomato. International Journal of Vegetable Science, 14, 380, 2008.
  • 9. DIMKPA C., WEINAND T., ASCH F. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ, 32, 1682, 2009.
  • 10. ARORA M., KAUSHIK A., RANI N., KAUSHIK C.P. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J Environ Biol, 31, 701, 2010.
  • 11. LASHKARIZADEH M., ESHGHI M. Investigating the impact of nanotechnology on environment. J. Env. Sci. Tech, 19, 51, 2017.
  • 12. BARUAH S., DUTTA J. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ. Chem. Lett, 7, 191, 2009.
  • 13. DEROSA M.C., MONREAL C., SCHMITZER M., WALSH R., SULTAN Y. Nanotechnology in fertilizers. Nat Nanotechnol, 1, 193, 2010.
  • 14. UPADHYAY S.K., SINGH J.S., SINGH D.P. Exopolysaccharide producing plant growth promoting rhizobacteria under salinity condition. Pedosphere, 21, 214, 2011.
  • 15. SIDDIQUI H.M., AL-WHAIBI M.H. Role of nano-Sio2 in germination of tomato (Licopersicum esculentum seeds Mill.). Saudi J Biol Sci, 21, 13, 2014.
  • 16. SAGHAFI D., ALIKHANI H., MOTOSHARE ZADEH B. Effect of plant growth promoting rhizobia on improving the nutritional status of Canola (Brassica napus L.) Under Salinity Stress. Water and Soil Science, 4, 159, 2013.
  • 17. BRADFORD M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 72, 248, 1976.
  • 18. AEBI H. Catalase in Vitro. Methods Enzymol. 105, 121, 1984.
  • 19. HOPKINS J., TUDHOPE G.R. Glutathione peroxidase in human red cells in health and disease. Br. J. Haematol, 25, 563, 1973.
  • 20. MINAMI M., YOSHIKAWA H. A simplified assay method of superoxide dismutase activity for clinical use. Clin. Chim. Acta, 92, 337, 1979.
  • 21. MCCORD J.M., FRIDOVICH I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 244, 6049, 1969.
  • 22. BATES L.S., WALDERN R.P, TEAVE I.D. Rapid determination of free proline for water stress studies. Plant Soil, 39, 205, 1973.
  • 23. ASHRAF M., FOOLAD M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 59, 206, 2007.
  • 24. POCKMAN W.T., SPERRY J.S. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot, 87, 1287, 2000.
  • 25. MOLAZEM D., AZIMI J. Morpho-Physiological Characterization in Eight Varieties of Maize (Zea mays L.) under Soil Salinity. Pol. J. Environ. Stud, 24, 2537, 2015.
  • 26. TALEBI ATOUEI M., POURBABAEE A.A., SHORAFA M. Effect of Halophilic Exopolysaccharide-Producing Bacteria on Wheat Growth under Drought and Saline Stresses. Iranian Journal of Soil Research, 1, 98, 2013.
  • 27. FARAJZADEH D., YAKHCHALI B., ALIASGHARZAD N., SOKHANDAN-BASHIR N., FARAJZADEH M. Plant indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol, 64, 397, 2011.
  • 28. BASHAN Y., DE-BASHAN L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv. Agron, 108, 77, 2010.
  • 29. KACI Y., HEYRAUD A., BARAKAT M., HEULIN T. Isolation and identification of an EPS-producing Rhizobium strain from aride soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol, 156, 522, 2005.
  • 30. SANDHYA V., ALI S.K.Z., GROVER M., REDDYC G., VENKATESWARLU B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertil. Soils, 46, 17, 2009.
  • 31. SHILEV S., SANCHO D.E., BENLLOCH-GONZALEZ M. Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage, 95, 37, 2010.
  • 32. YU X., AI C., XIN L., ZHOU G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol, 47, 138, 2011.
  • 33. CHITHRASHREE A.C., UDAYASHANKAR S., CHANDRA NAYAKA M.S., REDDY C.S. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae. Biol Control, 59, 114, 2011.
  • 34. BASET MIA M.A., SHAMSUDDIN Z.H., MAZIAH M. Use of plant growth promoting bacteria in banana: A new insight for sustainable banana production. Int. J. Agric. Biol, 12, 459, 2010.
  • 35. YAO L., WU Z., ZHENG Y., KALEEM I., LI C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Sci, 46, 49, 2010.
  • 36. HAGHIGHI M., AFIFIPOUR Z., MOZAFARIAN M. The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci, 6, 87, 2012.
  • 37. LEE S.K., SOHN E.Y., HAMAYUN M., YOON J.Y., LEE I.J. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst, 80, 333, 2010.
  • 38. AZIMI R., BORZELABAD M.J., FEIZI H., AZIMI A. Interaction of Sio2 nanoparticles with seed prechiling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol, 16, 25, 2014.
  • 39. LU J., LI Y., YAN X., SHI B., WANG D., TANG H. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids Surf A Physicochem Eng Asp, 347, 90, 2009.
  • 40. VACULIK M., LUX A., LUXOVÁ M., TANIMOTO E., LICHTSCHEIDL I. Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot, 67, 52, 2009.
  • 41. ZHU Y., GONG H. Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev, 34, 455, 2014.
  • 42. LI H., ZHU Y., HU Y., HAN W., GONG H. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant, 37, 1, 2015.
  • 43. ROMERO-ARANDA M.R., JURADO O., CUARTERO J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol, 163, 847, 2006.
  • 44. RICHERT L., GOLUBIC S., LE GUEDES R., RATISKOL J., PAYRI C., GUEZENNEC J. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol, 51, 379, 2005.
  • 45. GHARSALLAH C.H., FAKHFAKH H., GRUBB D., GORSANE F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants, 8, 1, 2016.
  • 46. MANSOUR M.M.F., SALAMA F.Z., ALI M., ABOU HADID A.F. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Appl. Plant Physiol, 31, 29, 2005.
  • 47. SAGHAFI K., AHMADI J., ASGHARZADEH A., BAKHTIARI S. The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. IJABBR, 1, 421, 2013.
  • 48. JIANG-YU F., XUE-LONG M. In vitro simulation studies of silica deposition induced by lignin from rice. J. Zhejiang Univ. Sci. B, 7, 267, 2006.
  • 49. LIANG Y.C., ZHANG W.Q., CHEN J., DING R. Effect of silicon on H⁺-ATPase and H⁺-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot, 53, 29, 2005.
  • 50. MANE A.V., DESHPANDE T.V., WAGH V.B., KARADGE B.A, SAMANT J.S. A critical review on physiological changes associated with reference to salinity. IJESD, 6, 1192, 2011.
  • 51. UPADHYAY S.K., SINGH J.S., SAXENA A.K. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol, 14, 605, 2012.
  • 52. BANIAGHIL N., ARZANESH M.H., GHORBANLI M., SHAHBAZI M. The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J. Appl. Environ. Biol. Sci, 3, 17, 2013.
  • 53. OMAR M.N.A., OSMAN M.E.H., KASIM W.A., ABD EL-DAIM L.A. Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. Salinity and Water Stress, Ashraf M, Ozturk M, Athar H.R, Springer, Dordrecht, Springer Netherlands, 44, 133, 2009.
  • 54. KOHLER J., ANTONIO HERNANDES J., CARAVACA F., ROLDAN A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot, 65, 245, 2009.
  • 55. GONG H., ZHU X., CHEN K., SUOMIN W., ZHANG CH. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313, 2005.
  • 56. VANNINI C., DOMINGO G., ONELLI E., PRINSI B., MARSONI M., ESPEN L., BRACALE M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One, 8, e6852, 2013.
  • 57. HAN H.S, LEE K.D. Physiological responses of soybean inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci, 1, 216, 2005.
  • 58. MA J.F., YAMAJI N. Functions and transport of silicon in plants. Cell Mol Life Sci, 65, 3049, 2008.
  • 59. XIAO Q., ZHANG F.D., WANG Y.J., ZHANG J.F., ZHANG S.Q. Effects of slow controlled release fertilizers felted and coated by nano-materials on crop yield and quality. Acta Metall Sin-Engl, 14, 951, 2008.
  • 60. ABDUL JALEEL C., RIADH K., GOPI R., MANIVANNAN P., INES J., AL-JUBURI H.J., CHANG-XING Z., HONG-BO S., PANNEERSELVAM R. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constrains. Acta Physiol Plant, 31, 427, 2009.
  • 61. KARRAY-BOURAOUI N., RABHI M., ATTIA H., HARBAOUI F., JALLALI I., KSOURI R., MSILINI N., LACHAÂL, M. Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant, 33, 1435, 2011.
  • 62. ROOHIZADEH G.H., ARBABIAN S., TAJADOD G., MAJD A., SALIMPOUR F. The study of Sodium silicate effects on the total protein content, and the activities of catalase, Peroxidase and Superoxide Dismutase of Vicia faba L. Bull. Env. Pharmacol. Life Sci, 3, 243, 2014.
  • 63. GURURANI M.A., UPADHYAYA C.P., BASKAR V., NOOKARAJU A., VENKATESH J., PARK S.W. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul, 32, 245, 2012.
  • 64. TURAN M., GÜLLÜCE M., ÇAKMAK R., ŞAHIN F. Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J. Plant Nutr, 36, 731, 2013.
  • 65. IMTIAZ M., RIZWAN M.S., MUSHTAQ M.A., ASHRAF M., SHAHZAD S.M., YOUSAF B., SAEED D.A., RIZWAN M., NAWAZ M.A., MEHMOOD S., TU S. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. J Environ Manage, 183, 521, 2016.
  • 66. SHI Y., ZHANG Y., YAO H., WU J., SUN H., GONG H. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem, 78, 27, 2014.
  • 67. WANG X., WEI Z., LIU D., ZHAO G. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. Afr. J. Biotechnol, 10, 545, 2011.
  • 68. HASSANEIN R.A., HASSANEIN A.A., HAIDER A.S., HASHEM H.A. Improving salt tolerance of Zea mays L. plant by presoaking their grains in glycine betaine. Aust J Basic Appl Sci, 3, 928, 2009.
  • 69. AMIRA M., ABDUL QADOS S. Mechanism of Nanosilicon-Mediated Alleviation of Salinity Stress in Faba Bean (Vicia faba L.) Plants. AJEA, 2, 78, 2015.
  • 70. HU L., LI H., PANG H., FU J. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J plant physiol, 169, 146, 2012.
  • 71. CHEN Y., CAO S., CHAI Y., CLARDY J., KOLTER R., GUO J., AND LOSICK R. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plant. Mol. Microbiol, 85, 418, 2012.
  • 72. MAHMOUDI GHADI P., TAJ ALIPOOR Z., KASHI A. Effect of Thiobacillus bacteria on growth and yield of tomato under salinity conditions.Specialty Semiannual Journal of Salt, 1, 63, 2012.
  • 73. BEAUREGARD P.B., CHAI Y., VLAMAKIS H., LOSICK R., KOLTER R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci, 110, 1621, 2013.
  • 74. QURASHI A.W., SABRI A.N. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol, 43, 1183, 2012.
  • 75. SIDDIKEE A., GLICK B.R., CHAUHAN S., YIM W., SA T. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halo tolerant bacteria containing 1 aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem, 49, 427, 2011.
  • 76. MISHRA A., KAVITA K., JHA B. Characterization of extracellular polymeric substances produced by microalgae Dunaliella salina. Carbohydr Polym, 83, 852, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c464cbaa-dff5-4d5f-b2be-b484e9a32a0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.