PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 163 | 08 |

Tytuł artykułu

Określenie pochodzenia wyłączonych drzewostanów nasiennych sosny rychtalskiej (Pinus sylvestris L.) z wykorzystaniem markerów mikrosatelitarnych

Treść / Zawartość

Warianty tytułu

EN
Determination of the origin of the rychtal Scots pine (Pinus sylvestris L.) seed tree stands using microsatellite markers

Języki publikacji

PL

Abstrakty

EN
The rychtal pine is one of the most valuable ecotypes of Scots pine (Pinus sylvestris L.) approved for the breeding purposes in Poland. However, it occupies stands typical for oaks and beeches as shown by the compatibility analysis of species composition in relation to the habitat type in which they occur. Such result raises some doubts in terms of the naturalness of the rychtal pine and calls its history and origin into question. In the present study, we used the set of nuclear microsatellite markers to characterize and compare the gene pool composition of the selected seed tree stands of the rychtal pine with 200−year−old pine trees which grow at the Syców Forest District (SW Poland). We aimed to know to what extent the set of alleles specified for the group of the oldest trees from natural habitats is represented in the younger forest tree stands of the rychtal pine. The analysis of molecular variance (AMOVA) and clustering analysis showed that the gene pool of the studied pine populations was homogenous (FST=0,02%, K=1). The parameters of genetic variation were similar for all populations except for the mean number of alleles. On average, 25 new alleles were found in two rychtal pine seed tree stands as compared to the set of alleles found in the group of old pine trees. However, all alleles defined for old pines were also present in the gene pool of younger rychtal pine forest stands. The differences in the gene pool richness result most likely from quite high differences in the number of individuals analyzed from each population. In conclusion, our results indicate the common origin of the studied Scots pine populations.

Wydawca

-

Czasopismo

Rocznik

Tom

163

Numer

08

Opis fizyczny

s.637-644,tab.,bibliogr.

Twórcy

  • Instytut Dendrologii, Polska Akademia Nauk w Kórniku, ul.Parkowa 5, 62-035 Kórnik
  • Instytut Dendrologii, Polska Akademia Nauk w Kórniku, ul.Parkowa 5, 62-035 Kórnik
autor
  • Uniwersytet im.Adama Mickiewicza w Poznaniu, ul.Uniwersytetu Poznańskiego 6, 61-614 Poznań
autor
  • Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Leśny Bank Genów Kostrzyca, Miłków 300, 58-535 Miłków
  • Instytut Dendrologii, Polska Akademia Nauk w Kórniku, ul.Parkowa 5, 62-035 Kórnik

Bibliografia

  • Bradshaw H. W. R. 2004. Past anthropogenic influence on European forests and some possible genetic consequences. Forest Ecology and Management 197: 203-212.
  • Chagné D., Chaumeil P., Ramboer A., Collada C., Guevara A., Cervera M. T., Vendramin G. G., Garcia V., Frigerio J. M., Echt C., Richardson T., Plomion C. 2004. Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theoretical and Applied Genetics 109: 1204-1214.
  • Chałupka W., Matras J., Barzdajn W., Blonkowski S., Burczyk J., Fonder J., Grądzki T., Gryzło Z., Kacprzak P. 2011. Program zachowania leśnych zasobów genowych i hodowli selekcyjnej drzew w Polsce na lata 2011-2035. CILP.
  • Chapuis M. P., Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621-631.
  • Cheddadi R., Vendramin G. G., Litt T., Francois L., Kageyama M., Lorentz S., Laurent J. M., de Beaulieu J.-L., Sadori L., Jost A., Lunt D. 2006. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography 15: 271-282.
  • Chybicki I. J., Burczyk J. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100: 106-113.
  • Corander J., Tang J. 2007. Bayesian analysis of population structure based on linked molecular information. Mathematical Biosciences 205: 19-31.
  • Cornuet J.-M., Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.
  • Donnelly K., Cottrell J., Ennos R. A., Vendramin G. G., A’Hara S., King S., Perry A., Wachowiak W., Cavers S. 2017. Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus. Molecular Ecology Resources 17: 943-954.
  • Dumolin S., Demesure B., Petit R. J. 1995. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91: 1253-1256.
  • Elsik C. G., Minihan V. T., Scarpa A. M., Hall S. E., Williams C. G. 2000. Low-copy microsatellite markers for Pinus taeda L. Genome 43: 550-555.
  • Excoffier L., Lischer H. E. L. 2010. Arlequin ver. 3.0: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567.
  • Franklin I. R. 1980. Evolutionary change in small populations. W: Soulé M. E., Wilcox B. A. [red.]. Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer, Sunderland, MA. 135-149.
  • Giertych M. 1980. Polskie rasy sosny, świerka i modrzewia w międzynarodowych doświadczeniach proweniencyjnych. Arboretum Kórnickie 25: 135-159.
  • Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices. Lausanne University, Switzerland.
  • Hebda A. M., Wójkiewicz B., Wachowiak W. 2017. Genetic characteristics of Scots pine (Pinus sylvestris L.) in Poland and reference populations based on nuclear and chloroplast microsatellite loci markers. Silva Fennica 51(2): article id 172; DOI: https://doi.org/10.14214/sf.1721.
  • Jensen S., Konraad H., Guberek T. 2017. The extent of historic translocation of Norway spruce forest reproductive material in Europe. Annals of Forest Science 74: 56.
  • Kostyrko J. 1925. Znaczenie pochodzenia żołędzi używanych do siewu. Las Polski 1: 12-16.
  • Lewandowski A., Litkowiec M., Grygier A., Dering M. 2012. Weryfikacja pochodzenia świerka pospolitego (Picea abies) w Nadleśnictwie Gołdap. Sylwan 156 (7): 494-501. DOI: https://doi.org/10.26202/sylwan.2012036.
  • Lewandowski A., Szydlarski M., Litkowiec M. 2014. Pochodzenie świerka pospolitego (Picea abies (L.) Karst.) w Nad-leśnictwie Kartuzy. Sylwan 158 (7): 509-515. DOI: https://doi.org/10.26202/sylwan.2013125.
  • Lindgren D., Paule L., Shen X. H., Yazadani R., Segerstrom U., Wallin J. E., Lejdebro M. L. 1995. Can viable pollen carry Scots pine genes over long distances. Grana 34: 64-69.
  • Litkowiec M., Lewandowski A., Rączka G. 2016. Spatial Pattern of the Mitochondrial and Chloroplast Genetic Variation in Poland as a Result of the Migration of Abies alba Mill. from Different Glacial Refugia. Forests 7: 284.
  • Matras J. 1989. Badania proweniencyjne Zakładu Nasiennictwa i Selekcji IBL nad sosną pospolitą. Sylwan 133 (11-12): 1-5.
  • Nei M. 1972. Genetic distance between populations. The American Naturalist 106: 283-291.
  • Nowakowska J. A. 2016. Microsatellite markers in analysis of forest-tree populations. W: Abdurakhmonov I. Y. [red.]. Microsatellite Markers. Open Science INTECH, Croatia. 95-116.
  • Peakall R., Smouse P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.
  • Peery Z. M., Kirby R., Reid B. N., Stoelting R., Doucet-Bëer E., Robinson S., Vásquezcarrillo C., Pauli J. N., Pasbřll P. J. 2012. Reliability of genetic bottleneck tests for detecting recent population declines. Molecular Ecology 21: 3403-3418.
  • Petit J. R., Brewer S., Bordacs S., Burg K., Cheddadi R., Coart E., Cottrell J., Csaikl U. M., van Dam B., Deans J. D., Espinel S., Fineschi S., Finkeldey R., Glaz I., Goicoechea P. G., Jensen J. S., Konig A. O., Lowe A. J., Madsen S. F., Matyas G., Munro R. C., Popescu F., Sladea D., Tabbener H., de Vries S. G. M., Ziegenhagen B., de Beaulieu J.-L., Kremer A. 2002. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 49-74.
  • Petit R. J., El Mousadik A., Pons O. 1998. Identifying population for conservation on the basis of genetic markers. Conservation Biology 12: 844-855.
  • Raymond M., Rousset F. 1995. An exact test for population differentiation. Evolution 49: 1280-1283.
  • Sinclair W. T., Morman J. D., Ennos R. A. 1999. The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Molecular Ecology 8: 83-88.
  • Soranzo N., Provan J., Powell W. 1998. Characterization of microsatellite loci in Pinus sylvestris L. Molecular Ecology 7: 1247-1263.
  • Takezaki N., Nei M., Tamura K. 2014. POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing other population statistics. Molecular Biology and Evolution 31: 1622-1624.
  • Wachowiak W., Wójkiewicz B., Cavers S., Lewandowski A. 2014. High genetic similarity between Polish and North European Scots pine (Pinus sylvestris L.) populations at nuclear gene loci. Tree Genetics & Genomes 10 (4): 1015-1025.
  • Waples R. S. 2005. Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology 14: 3335-3352.
  • Waples R. S., Do C. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications 3: 244-262.
  • Williams C. G. 2017. How meso-scale pollen dispersal and its gene flow shape gene conservation decisions. New Forests 48: 217-224.
  • Wójkiewicz B., Cavers S., Wachowiak W. 2016a. Current Approaches and Perspectives in Population Genetics of Scots Pine (Pinus sylvestris L.). Forest Science 62 (3): 343-354.
  • Wójkiewicz B., Litkowiec M., Wachowiak W. 2016b. Contrasting patterns of genetic variation in core and peripheral populations of highly outcrossing and wind pollinated forest tree species. AoB Plants. http://dx.doi.org/10.1093/ aobpla/plw054.plw054.
  • Żukowska W. B., Wachowiak W. 2017. Nuclear microsatellite markers reveal the low genetic structure of Pinus mugo Turra (dwarf mountain pine) populations in Europe. Plant Systematics and Evolution 303: 641-665.
  • Żukowska W. B., Wójkiewicz B., Litkowiec M., Wachowiak W. 2017. Cross-amplification and multiplexing of cpSSRs and nSSRs in two closely related pine species (Pinus sylvestris L. and P. mugo Turra). Dendrobiology 77: 59-64.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c456b187-9242-43d6-b334-64f5da96b84e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.