PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |
Tytuł artykułu

Review on the fate and mechanism of nitrogen pollutant removal from wastewater using a biological filter

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological filter (biofilter) technology has developed rapidly and has been extensively employed to remove nitrogen pollutants originating from aquatic environments. Due to the different responses of nitrogen microorganisms to various operating parameters and environmental factors, achieving satisfactory nitrogen removal in biofilters remains a challenge. Hence, this review aims to provide useful information on the underlying nitrogen removal mechanisms in biofilters by giving a comprehensive review of traditional and newly discovered nitrogen transformation processes and microbial communities associated with nitrogen cycling. Firstly, a brief summary on overall performance of biofilters using traditional and newly discovered methods for nitrogen removal was presented. The detailed nitrogen transformation pathways and functional microbial communities associated with nitrogen cycling in biofilters were discussed. A brief overview is followed by a more detailed discussion of techniques for assessing nitrogen microbial population dynamics and community structure and function. Finally, conclusions and recommendations for future work are highlighted.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
26
Numer
5
Opis fizyczny
p.1943-1954,fig.,ref.
Twórcy
autor
  • State Key Laboratory of Soil Erosion and Dry land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
autor
  • John and Willie Leone Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
autor
  • State Key Laboratory of Soil Erosion and Dry land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China
autor
  • Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
Bibliografia
  • 1. Wang H.L., Ji G.D., Bai X.Y. Enhanced long-term ammonium removal and its ranked contribution of microbial genes associated with nitrogen cycling in a lab-scale multimedia biofilter. Bioresour. Technol, 196, 57, 2015.
  • 2. Wang H.L., Ji G.D., Bai X.Y. Quantifying nitrogen transformation process rates using nitrogen functional genesin a multimedia biofilter under hydraulic loading rate constraints. Ecol. Eng, 82, 323, 2015.
  • 3. Zhang X., Wu Y., Gu B. Urban rivers as hotspots of regional nitrogen pollution. Environmental Pollution, 205, 139, 2015.
  • 4. Kannan D., Nedunchezhian S., Mani N. Physicochemical characteristics of groundwater from Kumbakonam Taluk of Thanjavur District-Tamilnadu (India). International Letters of Chemistry, Physics and Astronomy, 59, 1, 2015.
  • 5. Bratieres K., Fletcher T., Deletic A., Zinger Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res, 42, 3930, 2008.
  • 6. Wik T., Trickling filters and biofilm reactor modelling. Rev. Environ. Sci. Bio, 2, 193, 2003.
  • 7. Wang H., Ji G., Bai X. Distribution patterns of nitrogen micro-cycle functional genes and their quantitative coupling relationships with nitrogen transformation rates in a biotrickling filter. Bioresour. Technol, 209, 100, 2016.
  • 8. Ji G., He C., Tan Y. The spatial distribution of nitrogen removal functional genes in multimedia biofilters for sewage treatment. Ecological Engineering, 55, 35, 2013.
  • 9. Van den Akker B., Holmes M., Cromar N., Fallowfield H. Application of high rate nitrifying trickling filters for potable water treatment. Water Res, 42, 4514, 2008.
  • 10. Ji G., Tong J., Tan Y. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresour. Technol, 102, 550, 2011.
  • 11. Calvobado L.A., Pettitt T.R., Parsons N., Petch G.M., Morgan J.A., Whipps J.M. Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Appl. Environ. Microbiol, 69, 2116, 2003.
  • 12. Strous M., Van Gerven E., Zheng P., Kuenen J.G., Jetten M.S. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Res, 31, 1955, 1997.
  • 13. Cai Y.A., Li D., Liang Y.H., Zeng H.P., Zhang J. Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH4+-N. Bioresour. Technol, 172, 226, 2014.
  • 14. Chaudhary D.S., Vigneswaran S., Ngo H.H., Shim W.G., Moon H. Biofilter in water and wastewater treatment. Korean J. Chem. Eng, 20, 1054, 2003.
  • 15. Van den Akker B., Holmes M., Pearce P., Cromar N.J., Fallowfield H.J. Structure of nitrifying biofilms in a high-rate trickling filter designed for potable water pre-treatment. Water Res, 45, 3489, 2011.
  • 16. Paredes D., Kuschk P., Mbwette T., Stange F., Müller R., Köser H., New aspects of microbial nitrogen transformations in the context of wastewater treatment-a review. Eng. Life Sci, 7, 13, 2007.
  • 17. Zhang Y., Ji G.D., Wang R.J., Genetic associations as indices of nitrogen cycling rates in an aerobic denitrification biofilter used for groundwater remediation. Bioresour. Technol, 194, 49, 2015.
  • 18. Hasan H.A., Abdullah S.R.S., Kamarudin S.K., Kofli N.T., Anuar N. Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system. Sep. Purif. Technol, 130, 56, 2014.
  • 19. Shi Y.H., Wu G.X., Wei N., Hu H.Y. Denitrification and biofilm growth in a pilot-scale biofilter packed with suspended carriers for biological nitrogen removal from secondary effluent. J. Environ. Sci, 32, 35, 2015.
  • 20. Li P., Zuo J., Wang Y., Zhao J., Tang L., Li Z. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium. Water Res, 93, 74, 2016.
  • 21. Zhang Y., Cheng Y., Yang C., Luo W., Zeng G., Lu L. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater. Bioresour. Technol, 193, 424, 2015.
  • 22. Wang Z., Fei X., He S., Huang J., Zhou W. Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. Sci. Total. Environ, 579, 1706, 2017.
  • 23. Zhang Y., Ji G., Wang R. Drivers of nitrous oxide accumulation in denitrification biofilters with low carbon: nitrogen ratios. Water Res, 106, 79, 2016.
  • 24. Jing Z.Q., He R., Hu Y., Niu Q.G., Cao S.W., Li Y.Y. Practice of integrated system of biofilter and constructed wetland in highly polluted surface water treatment. Ecol. Eng, 75, 462, 2015.
  • 25. Zhang,S., Wang Y., He W., Xing M., Wu M., Yang J., Gao N., Sheng G., Yin D., Liu S. Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment. Bioresour. Technol, 146, 416, 2013.
  • 26. Ji G., Zhi W., Tan Y. Association of nitrogen micro-cycle functional genes in subsurface wastewater infiltration systems. Ecol. Eng, 44, 269, 2012.
  • 27. Cui J., Zhang Y. Research on biotrickling filters for wastewater and odor treatment, CRC Press, 247, 2017.
  • 28. Guillén J.S., Jayawardana L., Vazquez C.L., de Oliveira Cruz L., Brdjanovic D., van Lier J. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. Bioresour. Technol, 187, 314, 2015.
  • 29. Chatterjee P., Ghangrekar M., Rao S. Development of anammox process for removal of nitrogen from wastewater in a novel self-sustainable biofilm reactor. Bioresour. Technol, 218, 723, 2016.
  • 30. Liang Y., Li D., Zhang X., Zeng H., Yang Z., Zhang J. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresour. Technol, 169, 103, 2014.
  • 31. Zeng T.T., Li D., Zeng H.P., Xie S.B., Qiu W.X., Liu Y.J., Zhang J. Nitrogen removal efficiency and microbial community analysis of ANAMMOX biofilter at ambient temperature. Water Sci. Technol, 71, 725, 2015.
  • 32. Liang Y., Li D., Zhang X., Zeng H., Yang Z., Cui S., Zhang J. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels. Bioresour. Technol, 171, 168, 2014.
  • 33. González-Martínez A., Calderón K., Albuquerque A., Hontoria E., González-López J., Guisado I., Osorio F. Biological and technical study of a partial-SHARON reactor at laboratory scale: effect of hydraulic retention time. Bioproc. Biosyst. Eng, 36, 173, 2013.
  • 34. Windey K., De Bo I., Verstraete W. Oxygen-limited autotrophic nitrification – denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Res, 39, 4512, 2005.
  • 35. Guillén J.S., Guardado P.C., Vazquez C.L., de Oliveira Cruz L., Brdjanovic D., van Lier J. Anammox cultivation in a closed sponge-bed trickling filter. Bioresour. Technol, 186, 252, 2015.
  • 36. van Kessel M.A., Speth D.R., Albertsen M., Nielsen P.H., den Camp H.J.O., Kartal B., Jetten M.S., Lücker S. Complete nitrification by a single microorganism. Nature, 528, 555, 2015.
  • 37. Canfield D.E., Glazer A.N., Falkowski P.G., The evolution and future of Earths nitrogen cycle. Science, 330, 192, 2010.
  • 38. Petersen D.G., Blazewicz S.J., Firestone M., Herman D.J., Turetsky M., Waldrop M. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol, 14, 993, 2012.
  • 39. Juretschko S., Timmermann G., Schmid M., Schleifer K.H. Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge: Nitrosococcus mobilis and Nitrospira -Like Bacteria as Dominant Populations. Appl. Environ. Microbiol, 64, 3042, 1998.
  • 40. Urakawa H., Tajima Y., Numata Y., Tsuneda S. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl. Environ. Microbiol, 74, 894, 2008.
  • 41. Poly F., Wertz S., Brothier E., Degrange V. First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA. FEMS microbiology ecology, 63, 132, 2008.
  • 42. Bagchi S., Vlaeminck S.E., Sauder L.A., Mosquera M., Neufeld J.D., Boon N. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters. PLoS. One, 9, e113515, 2014.
  • 43. Van Dongen U., Jetten M.S., Van Loosdrecht M. The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci. Technol, 44, 153, 2001.
  • 44. Philips S., Laanbroek H.J., Verstraete W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. R. Environ. Sci. Biotechnol, 1, 115, 2002.
  • 45. Kim D.-J., Lee D.-I., Cha G.-C., Keller J. Analysis of free ammonia inhibition of nitrite oxidizing bacteria using a dissolved oxygen respirometer. Environ. Eng. Res, 13, 125, 2008.
  • 46. Vadivelu V.M., Keller J., Yuan Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Res, 41, 826, 2007.
  • 47. Euiso C., Daewhan R., Zuwhan Y., Euisin L. Temperature effects on biological nutrient removal system with weak municipal wastewater. Water Sci. Technol, 37, 219, 1998.
  • 48. Willers H., Derikx P., Ten Have P., Vijn T. Nitrification limitation in animal slurries at high temperatures. Bioresour. Technol, 64, 47, 1998.
  • 49. Kim D., Chang J., Lee D., Han D., Yoo I., Cha G. Nitrification of high strength ammonia wastewater and nitrite accumulation characteristics. Water Sci. Technol, 47, 45, 2003.
  • 50. Garrido J., Van Benthum W., Van Loosdrecht M., Heijnen J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng, 53, 168, 1997.
  • 51. De Boer W., Gunnewiek P.K., Laanbroek H. Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil Biology & Biochemistry, 27, 127, 1995.
  • 52. Jiménez E., Giménez J., Ruano M., Ferrer J., Serralta J. Effect of pH and nitrite concentration on nitrite oxidation rate. Bioresour. Technol, 102, 8741, 2011.
  • 53. Alleman J. Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci. Technol, 17, 409, 1985.
  • 54. Mulder J., Van Loosdrecht M., Hellinga C., Van Kempen R. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci. Technol, 43, 127, 2001.
  • 55. Bernet N., Dangcong P., Delgenès J.-P., Moletta R. Nitrification at low oxygen concentration in biofilm reactor. J. Environ. Eng, 127, 266, 2001.
  • 56. Szota C., Farrell C., Livesley S.J., Fletcher T.D. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater. Water Res, 83, 195, 2015.
  • 57. Vezzaro L., Eriksson E., Ledin A., Mikkelsen P.S. Quantification of uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in a stormwater retention pond and a biofilter. Water Res, 46, 6891, 2012.
  • 58. Shanahan J.W., Semmens M.J. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: An experimental and model analysis. Water Res, 74, 10, 2015.
  • 59. Zhang T., Jin T., Yan Q., Shao M., Wells G., Criddle C., P Fang H. Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J. Appl. Microbiol, 107, 970, 2009.
  • 60. Zumft W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R, 61, 533, 1997.
  • 61. Cao Y., Green P.G., Holden P.A. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl. Environ. Microbiol, 74, 7585, 2008.
  • 62. Wang H., Ji G., Bai X., He C. Assessing nitrogen transformation processes in a trickling filter under hydraulic loading rate constraints using nitrogen functional gene abundances. Bioresour. Technol, 177, 217, 2015.
  • 63. Faulwetter J.L., Gagnon V., Sundberg C., Chazarenc F., Burr, M.D., Brisson J., Camper A.K., Stein O.R. Microbial processes influencing performance of treatment wetlands: a review. Ecol. Eng, 35, 987, 2009.
  • 64. Hajaya M.G., Tezel U., Pavlostathis S.G. Effect of temperature and benzalkonium chloride on nitrate reduction. Bioresour. Technol, 102, 5039, 2011.
  • 65. Heinen M. Simplified denitrification models: overview and properties. Geoderma, 133, 444, 2006.
  • 66. Glass C., Silverstein J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res, 32, 831, 1998.
  • 67. Strous M., Fuerst J.A., Kramer E.H., Logemann S., Muyzer G., van de Pas-Schoonen K.T., Webb R., Kuenen J.G., Jetten, M.S. Missing lithotroph identified as new planctomycete. Nature, 400, 446, 1999.
  • 68. Bae H., Park K.-S., Chung Y.-C., Jung J.-Y. Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR. Process. Biochem., 45, 323, 2010.
  • 69. Fernández I., Dosta J., Fajardo C., Campos J., Mosquera-Corral A., Méndez R., Short-and longterm effects of ammonium and nitrite on the Anammox process. J. Environ. Manage, 95, S170, 2012.
  • 70. Tang C.-j., Zheng P., Wang C.-h., Mahmood Q. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor. Bioresour. Technol, 101, 1762, 2010.
  • 71. Aktan C.K., Yapsakli K., Mertoglu B. Inhibitory effects of free ammonia on Anammox bacteria. Biodegradation, 23, 751, 2012.
  • 72. Strous M., Kuenen J.G., Jetten M.S. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol, 65, 3248, 1999.
  • 73. Egli K., Fanger U., Alvarez P.J., Siegrist H., van der Meer J.R., Zehnder A.J. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol, 175, 198, 2001.
  • 74. Lan C.-J., Kumar M., Wang C.-C., Lin J.-G. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour. Technol, 102, 5514, 2011.
  • 75. Hellinga C., Schellen A., Mulder J.W., Van Loosdrecht M., Heijnen J. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol, 37, 135, 1998.
  • 76. Sliekers A.O., Derwort N., Gomez J.C., Strous M., Kuenen J., Jetten M. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res, 36, 2475, 2002.
  • 77. Liu T., Li D., Zeng H., Li X., Zeng T., Chang X., Cai Y.a.. Zhang J. Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen-removal over nitrite (CANON) process. Bioresour. Technol, 118, 399, 2012.
  • 78. Liang Y., Li D., Zhang X., Zeng H., Zhang J. Performance and influence factors of completely autotrophic nitrogen removal over nitrite (CANON) process in a biofilter packed with volcanic rocks. Environ. Technol, 36, 946, 2015.
  • 79. Kuai L., Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl. Environ. Microbiol, 64, 4500, 1998.
  • 80. De Clippeleir H.e., Courtens E., Mosquera M., Vlaeminck S.E., Smets B.F., Boon N., Verstraete W. Efficient total nitrogen removal in an ammonia gas biofilter through high-rate OLAND. Environ. Sci. Technol, 46, 8826, 2012.
  • 81. Zhi W., Yuan L., Ji G., He C. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands. Environ. Sci. Technol, 49, 4575, 2015.
  • 82. Lv J., Wang Y., Zhong C., Li Y., Hao W., Zhu J. The microbial attachment potential and quorum sensing measurement of aerobic granular activated sludge and flocculent activated sludge. Bioresour. Technol, 151, 291, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-c424a9d7-cd1c-4a3a-9181-32963f3db90d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.