Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 03 |
Tytuł artykułu

Beating cold by being tough: impact of elevation on leaf characteristics in Phleum himalaicum Mez. endemic to Himalaya

Warianty tytułu
Języki publikacji
Effect of altitude on leaf responses in Phleum himalaicum populations was evaluated at three different elevation levels, viz. (Low 1200 m.a.s.l.), middle (1600 m a.s.l.) and high (1900 m a.s.l.) in western part of Himalaya. We hypothesized that physico-chemical properties of soil varied along elevation and Phleum populations located at high elevation would adapt more distinct morphological and physiological traits than those originating from middle and low elevation sites. Our study revealed that soil pH, Ec Mg, Ca, and P decreased at high elevation however, significant increase was recorded in soil K, organic matter, and total nitrogen along the elevation gradient. A significant correlation between leaf characteristics and elevation sites was recorded along the gradient. The outcomes of this study showed that highland population had better adjustments under low temperature and exhibited adaptive traits. These were, decreased number of leaves and leaf area, increased leaf blade thickness, intensive sclerification, and greater stomatal and trichome density. Apart from these, high elevation population had more physiological adjustment in terms of low stomatal conductance, low transpiration rate, high water use efficiency, and synthesis of more osmolytes in leaf. We argued that certain level of sugar and protein must be attained by high population to dodge the aggressive climatic forces in order to grow successfully at the highest elevation. Furthermore, altitude between 1600 and 1900 m was more likely an optimum zone for vigorous growth of P. himalaicum at the highest level of elevation.
Słowa kluczowe
Opis fizyczny
Article 56 [17p.], fig.,ref.
  • Department of Botany, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan
  • Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
  • Department of Horticulture, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan
  • Department of Agronomy, MNS, University of Agriculture, Multan, Pakistan
  • Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan
  • Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
  • School of Geography and Tourism, Guizhou Education University, Guiyang 550018, China
  • Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
  • Department of Food Science and Technology, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan
  • Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
  • Ahmad KS, Qureshi R, Hameed M, Ahmad F, Nawaz T (2012) Conservation assessment and medicinal importance of some plants resources from Sharda, Neelum Valley, Azad Jammu and Kashmir, Pakistan. Int J Agric Biol 14:997–1000
  • Ahmad KS, Hameed M, Fatima S, Ashraf M, Ahmad F, Naseer M, Akhtar N (2016a) Morpho-anatomical and physiological adaptations to high elevation in some Aveneae grasses from Neelum Valley, Western Himalayan Kashmir. Acta Physiol Plant 38:93.
  • Ahmad KS, Hameed M, Ahmad F, Sadia B (2016b) Edaphic factors as major determinants of plant distribution of temperate Himalayan grasses. Pak J Bot 48:567–573
  • Ahmad KS, Hameed M, Jiabin D, Ashraf M, Hamid A, Ahmad F, Fatima S, Akhtar N (2016c) Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance. Biologia 71:885–8895
  • Ahmad KS, Hamid A, Nawaz F, Hameed M, Ahmad F, Deng J, Akhtar N, Wazarat A, Mahroof S (2017) Ethnopharmacological studies of indigenous plants in Kel village, Neelum Valley, Azad Kashmir, Pakistan. J Ethnobiol Ethnomed 13:68.
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Atkin OK, Botman B, Lambers H (1996) The causes of inherently slow growth in alpine plants: an analysis based on the underlying carbon economies of alpine and lowland Poa species. Funct Ecol 10:698–707
  • Bai YJ, Chen LQ, Ranhotra PS, Wang Q, Wang YF, Li CS (2015) Reconstructing atmospheric CO₂ during the Plio–Pleistocene transition by fossil Typha. Glob Change Biol 21:874–881
  • Ball MC, Canny MJ, Huang CX, Heady RD (2004) Structural changes in acclimated and unacclimated leaves during freezing and thawing. Funct Plant Biol 31:29–40
  • Balsamo RA, Willigen CV, Bauer AM, Farrant J (2006) Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann Bot 97:985–991
  • Bano S, Rehman A, Winiger M (2009) Altitudinal variation in the content of protein, proline, sugar and abscisic acid (ABA) in the alpine herbs from Hunza Valley, Pakistan. Pak J Bot 41:1593–1602
  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207
  • Clayton WD, Harman KT Williamson H (2006) World Grass Species—Synonymy database. The Board of Trustees of the Royal Botanic Gardens, Kew
  • Cohen SS, Gale J, Poljakoff-Mayber A, Shmida A, Suraqui S (1981) Transpiration and the radiation climate of the leaf on Mt. Hermon: a Mediterranean mountain. J Ecol 69:391–403
  • Cook D, Fowler S, Fiehn O, Tomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248
  • Cope TA (1982) Flora of Pakistan, vol 143. Department of Botany, University of Karachi, Karachi, pp 1–678
  • Cordell S, Goldstein G, Mueller-Dombois D, Webb D, Vitousek PM (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113:188–196
  • De Frenne P, Graae BJ, Rodriguez-Sanchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, Diekmann M, Eriksson O (2013) Latitudinal gradients as natural laboratories to infer species responses to temperature. J Ecol 101:784–795
  • Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, Yang DU, Lee OR, Lee S, Yang DC (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ J Plant Physiol 59:318–325
  • Dierig DA, Adama NR, Mackey BE, Dahlquist GH, Coffelt TA (2006) Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species Indus Crops. Prod 24:17–25
  • Falster DS, Westoby M (2005) Alternative height strategies among 45 dicot rain forest species from tropical Queensland. Aust J Ecol 93:521–535
  • Fatemeh Z, Tajik S, Soleimanpour S (2011) Effects of elevation on anatomy and concentration of Crocin, Picrocrocin and Safranal in Crocus sativus L. Aust J Crop Sci 5:831–838
  • Feng Q, Centritto M, Cheng R, Liu S, Shi Z (2013) Leaf functional trait responses of Quercus aquifolioides to high elevations. Int J Agric Biol 15:69–75
  • Gale J (1973) Experimental evidence for the effect of barometric pressure on photosynthesis and transpiration. Ecol Conserv (UNESCO) 5:289–293
  • Gale J (2004) Plant and altitude-revisited. Ann Bot 2:199
  • Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. For Ecol Manag 257:1–7
  • Guerin GR, Wen H, Lowe AJ (2012) Leaf morphology shift linked to climate change. Biol Lett 8:882–886
  • Gupta SM, Grover A, Ahmed Z (2012) Identification of abiotic stress responsive genes from Indian high elevation Lepidium latifolium L. Def Sci J 62:315–318
  • Hammond KA, Roth J, Janes DN, Dohm MR (1999) Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus. Physiol Biochem Zool 72:613–622
  • Herrick GT, Friedland AJ (1991) Winter desiccation and injury of subalpine red spruce. Tree Physiol 8:23–36
  • Hovenden MJ, Schoor JKV (2006) The response of leaf morphology to irradiance depends on elevation of origin in Nothofagus cunninghamii. New Phytol 169:291–297
  • Hovenden MJ, Vander Schoor JK (2004) Nature versus nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol 161:585–594
  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Kellar WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756
  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230
  • Ivanov AG, Sane PV, Zeinalov Y, Malmberg G, Gardeström P, Huner NPA, Öquist G (2001) Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta 213:575–585
  • Jan G, Kahan M, Ahmad M, Iqbal Z, Afzal A, Afzal M, Shah GM, Majid A, Fiaz M, Zafar M, Waheed A, Gul F (2011) Nutritional analysis, micronutrients and chlorophyll contents of Cichorium intybus L. J Med Plants Res 5:2452–2456
  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020
  • Kandwal MK, Gupta BK (2009) An update on grass flora of Uttarkhand. Indian J For 32:657–668
  • Kessler M (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodivers Conserv 10:1897–1921
  • Kidanemariam A, Gebrekidan H, Mamo Kibret K (2012) Impact of altitude and land use type on some physical and chemical properties of acidic soils in Tsegede Highlands, Northern Ethiopia. Open J Soil Sci 2:223–233
  • Klein T, Di Matteo G, Rotenberg E, Cohen S, Yakir D (2013) Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol 33:26–36
  • Kofidis G, Bosabalidis AM, Moustakas M (2003) Contemporary seasonal and altitudinal variations of leaf structural features in Oregano (Origanum vulgare L.). Ann Bot 92:635–645
  • Kofidis G, Bosabalidis AM, Moustakas M (2007) Combined effect of elevation and season on leaf characteristics of Chenopodium vulgare L. (Labiatae). Environ Exp Bot 60:69–76
  • Köhler L, Gieger T, Leuschner C (2006) Altitudinal change in soil and foliar nutrient concentrations and in microclimate across the tree line on the subtropical island mountain Mt. Teide (Canary Islands). Flora 201:202–214
  • Koppel A, Heinsoo K (1994) Variability in cuticular resistance of Picea abies (L.) Karst. and its significance in winter desiccation. Proc Estonian Acad Sci 4:56–63
  • Körner C (2007) The use of elevation in ecological research. Trends Ecol Evol 22:569–574
  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69:577–588
  • Körner C, Neumayer M, Menendez-Riedl S, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383
  • Kouwenberg LLR, Kurschner WM, McElwain JC (2007) Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Rev Miner Geochem 66:215–241
  • Kumar N, Vats KS, Kumar S, Ahuja PS (2008) Altitude-related changes in activities of carbon metabolism enzymes in Rumex nepalensis. Photosynthetica 46(4):611–614
  • Kumar N, Kumar S, Ahuja PS (2005) Photosynthetic characteristics of Hordeum, Triticum, Rumex, and Trifolium species at contrasting altitudes. Photosynthetica 43:195–201
  • Larcher W (1985) Winter stress in high mountains. In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forest: research and management. Eidgenössische Anstalt für forstliches Versuchswe-sen, Birmensdorf, pp 11–19
  • Li GY, Yang DM, Sun SC (2008a) Allometric relationships between lamina area, lamina mass, and petiole mass of 93 temperate woody species vary with leaf habit, leaf form, and altitude. Funct Ecol 22:557–564
  • Li H, Qiang S, Qian Y (2008b) Physiological response of different croftonwood (Eupatorium adenophorum) population to low temperature. Weed Sci 56:196–202
  • Li Z, Ji C, Liu J (2008c) Leaf area calculating based on digital image. In: Li D (ed) Computer And computing technologies in agriculture, vol II. CCTA 2007. The International Federation for Information Processing, vol 259. Springer, Boston
  • Liu L, Xu SM, Woo KC (2005) Solar UV-B radiation on growth, photosynthesis and the xanthophylls cycle in tropical Acacia and Eucalyptus. Environ Exp Bot 54:121–130
  • Lowry OH, Rosebrough NJ, Farr AL Randall RJ (1951) Protein Measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275
  • Macek P, Mackova J, de Bello F (2009) Morphological and ecophysiological traits shaping altitudinal distribution of three Polylepis treeline species in the dry tropical Andes. Acta Oecol 35:778–785
  • Macek P, Leoš K, Lubomir A, Jiři D, Zuzana C, Francesco B, Miroslav D, Klára Ř (2012) Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. Antarct Alp Res 44:62–66
  • Malgorzata B, Nevena S, Zaltko Z, Daniela G (2008) Physiological response of some genotypes (Lycopersicum esculentum L.) to high temperature stress. J Cent Eur Agric 9:723–732
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Moles AT, Leishman MR (2008) The seedling as part of a plant’s life history strategy. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 217–238
  • Moor S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388
  • Morecroft MD, Woodward FI (1996) Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpine. New Phytol 134:471–479
  • Pato J, Obeso JR (2012) Growth and reproductive performance in bilberry (Vaccinium myrtillus) along an elevation gradient. Ecoscience 19:59–68
  • Peng YH, Zhu YF, Mao YQ (2004) Alkali grass resists salt stress through high K and an endodermis barrier to Na. J Exp Bot 55:939–949
  • Premoli AC, Brewer CA (2007) Environmental v. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Aust J Bot 55:585–591
  • Rajashekar CB, Burke MJ (1996) Freezing characteristics of rigid plant tissues. Development of cell tension during extracellular freezing. Plant Physiol 111:597–603
  • Rajashekar CB, Lafta A (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol 111:605–612
  • Rekarte-Cowie I, Ebshish OS, Mohamed KS, Pearce RS (2008) Sucrose helps regulate cold acclimation of Arabidopsis thaliana. J Exp Bot 59:4205–4217
  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold activation of Brassica napus BN115 promter is mediated by structural changes in membranes and cytoskeleton and requires Ca²⁺ influx. Plant J 27:1–12
  • Sariyildiz T, Anderson JM, Kucku M (2005) Effects of tree species and topography on soil chemistry, litter quality and decomposition in Northeast Turkey. Soil Biol Biochem 37:1695–1706
  • Scholz FG, Bucci SJ, Arias N, Meinzer FC, Goldstein G (2012) Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia 170:885–897
  • Schreiber L, Hartmann K, Skrabs M (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280
  • Scrase-Field SA, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6:500–506
  • Shi Z, Haworth M, Feng Q, Cheng R, Centritto M (2015) Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AoB Plants 7:plv115.
  • Solecka D, Żebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot 101:521–530
  • Stefanowska M, Kuraś M, Kubacka-Zebalska M, Kacperska A (1999) Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape (Brassica napus L., var. oleifera L.). Ann Bot 84:313–319
  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280
  • Suzuki S (1998) Leaf phenology, seasonal changes in leaf quality and herbivory pattern of Sanguisorba tenuifolia at different altitudes. Oecologia 117:169–176
  • Taguchi Y, Wada N (2001) Variations of leaf traits of an alpine shrub Sieversia pentapetala along an altitudinal gradient and under a stimulated environmental change. Polar Biosci 14:79–87
  • Taji T, Ohsumi C, Luchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426
  • Taub D (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Educ Knowl 3:21
  • Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Is photosynthesis suppressed at higher elevations due to low CO₂ pressure? Ecology 76:2663–2668
  • Unal BT, Guvensen A, Dereboylu AE, Ozturk M (2013) Variations in the proline and total protein contents in Origanum sipyleum L. from different altitudes in Spil Mountain, Turkey. Pak J Bot 45:571–576
  • Valladares F, Balaguer L, Martínez-Ferri E, Perez-Corona E, Manrique E (2002) Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467
  • Venema JH, Eekhof M, Van Hasselt PR (2000a) Analysis of low-temperature tolerance of a tomato (Lycopersicon esculentum) cybrid with chloroplasts from a more chilling-tolerant L. hirsutum accession. Ann Bot 85:799–807
  • Venema JH, Villerius L, Van Hasselt PR (2000b) Effect of acclimation to suboptimal temperature on chilling-induced photodamage: comparison between a domestic and a high-elevation wild Lycopersicum species. Plant Sci 152:153–163
  • Vincent AG, Sundqvist MK, Wardle DA, Giesler R, Wang X (2014) Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape. PLoS ONE 9(3):e92942
  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37
  • Wang G, Feng X (2012) Response of plants’ water use efficiency to increasing atmospheric CO₂ concentration. Environ Sci Technol 46(16):8610–8620.
  • Weih M, Karlsson PS (1999) Growth response of altitudinal ecotypes of mountain birch to temperature and fertilization. Oecologia 119:16–23
  • Weiser RL, Wallner SJ, Waddell JW (1990) Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol 93:1021–1026
  • Wolf B (1982) A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059
  • Woodward FI (1979) The differential temperature responses of the growth of certain plant species from different elevations. II. Analyses of the control and morphology of leaf extension and specific leaf area of Phleum bertolonii D.C. and P. alpinum L. New Phytol 82:397–405
  • Woodward FI, Lake JA, Quick WP (2002) Stomatal development and CO₂: ecological consequences. New Phytol 153:477–484
  • Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719
  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508–514
  • Young KR, Ulloa UC, Luteyn JL, Knapp S (2002) Plant evolution and endemism in Andean South America: an introduction. Bot Rev 68:4–27
  • Yujing Z, Yong Z (2000) Studies on ultrastructure of Puccinellia tenuiflora under different salinity stress. Grassl China 4:30–32
  • Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF et al (2012) Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. Plos One 7(6):e40080.
  • Zhao X, Tan H, Chen G (2016) Effect of organic osmolytes and ABA accumulated in twelve dominant desert plants of the Tengger Desert, China. Res Rev J Bot Sci 5:45–50
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.