Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 56 | 2 |
Tytuł artykułu

Body temperature and body mass of hibernating little brown bats Myotis lucifugus in hibernacula affected by white-nose syndrom

Warianty tytułu
Języki publikacji
Populations of hibernating bats in the northeastern USA are being decimated by white-nose syndrome (WNS). Although the ultimate cause of death is unknown, one possibility is the premature depletion of fat reserves. The immune system is suppressed during hibernation. Although an elevated body temperature (T b) may facilitate an immune response, it also accelerates the depletion of fat stores. We sought to determine if little brown bats Myotis lucifugus Le Conte 1831 hibernating in WNS-affected hibernacula have an elevated T b and reduced fat stores, relative to WNS-unaffected Indiana bats Myotis sodalis Miller and Allen 1928 from Indiana. We found that WNS-affected M. lucifugus maintain a slightly, but significantly, higher skin temperature (T skin), relative to surrounding rock temperature, than do M. sodalis from Indiana. We also report that WNS-affected M. lucifugus weigh significantly less than M. lucifugus from a hibernaculum outside of the WNS region. However, the difference in T skin is minimal and we argue that the elevated T b is unlikely to explain the emaciation documented in WNS-affected bats.
Słowa kluczowe
Opis fizyczny
  • Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC 29301, USA
  • Center for North American Bat Research and Conservation, Department of Ecology and Organismal Biology, Indiana State University, Terre Haute, IN 47809, USA
  • Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
  • Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227–227
  • Boyles JG, Brack V Jr (2009) Modeling survival rates of hibernating mammals with individual-based models of energy expenditure. J Mammal 90:9–16
  • Boyles JG, McKechnie AE (2010) Energy conservation in hibernating endotherms: why “suboptimal” temperatures are optimal. Ecol Model 221:1644–1647
  • Boyles JG, Willis CKR (2010) Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white nose syndrome? Front Ecol Environ 8:92–98
  • Boyles JG, Dunbar MB, Storm JJ, Brack V Jr (2007) Energy availability influences microclimate selection of hibernating bats. J Exp Biol 210:4345–4350
  • Boyles JG, Storm JJ, Brack V Jr (2008) Thermal benefits of clustering during hibernation: a field test of competing hypotheses on Myotis sodalis. Funct Ecol 22:632–636
  • Brack V Jr (2007) Temperatures and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: implications for conservation and management. Environ Manage 40:739–746
  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181
  • Cryan PM, Meteyer CU, Boyles JG, Blehert DS (2010) Wing pathology associated with White-nose Syndrome in bats suggests life-threatening disruption of physiology. BMC Biology 8:135. doi:10.​1186/​1741-7007-8-135
  • Dausmann KH (2005) Measuring body temperature in the field—evaluation of external vs. implanted transmitters in a small mammal. J Therm Biol 30:195–202
  • Dunbar M, Brigham RM (2010) Thermoregulatory variation among populations of bats along a latitudinal gradient. J Comp Physiol B 180:885–893
  • Frank CL, Carpovich S, Barnes BM (2008) Dietary fatty acid composition and the hibernation patterns in free-ranging arctic ground squirrels. Physiol Biochem Zool 81:486–495
  • Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682
  • Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp nov associated with bat white-nose syndrome. Mycotaxon 108:147–154
  • Kunz TH, Wrazen JA, Burnett CD (1998) Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience 5:8–17
  • Luis AD, Hudson PJ (2006) Hibernation patterns in mammals: a role for bacterial growth? Funct Ecol 20:471–477
  • Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V, Thomas NJ, Gargas A, Behr MJ (2009) Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Invest 21:411–414
  • Prendergast BJ, Freeman DA, Zucker I, Nelson RJ (2002) Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol—Reg I 282:R1054–R1062
  • Reichard J, Kunz T (2009) White-nose syndrome inflicts lasting injuries to the wings of little brown Myotis (Myotis lucifugus). Acta Chiropt 11:457–464
  • Stadelmann B, Lin LK, Kunz TH, Ruedi M (2007) Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43:32–48
  • Whitaker JO Jr, Hamilton WJ (1998) Mammals of the eastern United States, 3rd edn. Cornell University Press, Ithaca
  • Willis CKR, Brigham RM (2003) Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B 173:379–389
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.