Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 76 | 09 |
Tytuł artykułu

Transition period and subclinical ketosis in dairy cattle: association with milk production, metabolic and reproductive disorders and economic aspects

Warianty tytułu
Języki publikacji
Many dairy cows experience a high incidence of health problems during the transition period (TP). The TP is an intermediate stage of various digestive, metabolic and reproductive functions which determine the general health status at the time of calving and during the first weeks postpartum. Negative energy balance due to increased energy demand at parturition and significantly reduced dry matter intake relative to demand is an important determinant. Consequently, substantial lipid mobilization from adipose tissue, increased oxidative stress and impaired immunity are associated with higher incidences of periparturient health problems including ketosis or subclinical ketosis (SCK), which have tremendous economic impact on dairy productivity. SCK is defined as the presence of increased blood ketone bodies (BHBA: betahydroxybutyric acid, acetone, acetoacetic acid) without clinical ketosis signs. Varying blood and milk cut-off values have been reported for BHBA concentrations defining SCK, but the most commonly accepted values are ≥ 1.2 mmol/L and ≥ 200 μmol/L respectively. This underestimated disease can impact dairy cow productivity through decreased milk production in the order of roughly 300 kg/lactation and increases the risk of metabolic and reproductive diseases such as displaced abomasum, retained placenta, metritis, mastitis, prolong oestrus interval and reduces conception rates. SCK also referred to as ‘profit robber or killer’ can cause productivity and economic losses of between $200-290 per dairy cow annually. Options for the control and prevention of SCK include controlled-release monensin capsules, and the injectable combination butaphosphan and cyanocobalamin and oral propylene glycol. SCK is easy to detect in early lactation using cow-side validated BHBA analysers with high specificity and sensitivity.
Słowa kluczowe
Opis fizyczny
  • Department of Biochemistry, Faculty of Veterinary Medicine, Milas, University of Mugla Sıtkı Koçman, 48277 Mugla, Turkey
  • Department of Internal Medicine, Faculty of Veterinary Medicine, Milas, University of Mugla Sıtkı Koçman, 48277 Mugla, Turkey
  • Department of Biochemistry, Faculty of Veterinary Medicine, Milas, University of Mugla Sıtkı Koçman, 48277 Mugla, Turkey
  • 1. Andersson L.: Subclinical ketosis in dairy cows. Vet. Clin. North. Am. Food Anim. Pract. 1988, 4, 233-251, doi: 10.1016/S0749-0720(15)31046-X.
  • 2. Angelia E., Trionfinia V., Gareisa N. C., Matillera V., Hubera E., Reya F., Salvettia N. R., Ortegaa H. H., Heina G. J.: Protein and gene expression of relevant enzymes and nuclear receptor of hepatic lipid metabolism in grazing dairy cattle during the transition period. Research in Veterinary Science 2019, 123, 223-231, doi: 10.1016/j.rvsc.2019.01.020.
  • 3. Baumgard L. H., Collier R. J., Bauman D. E.: A 100-Year Review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci. 2017, 100, 10353-10366, doi: 10.3168/jds.2017-13242.
  • 4. Bell A. W.: Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804-2819, doi: 10.2527/1995.7392804x.
  • 5. Berge A. C., Vertenten G.: A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. J. Dairy Sci. 2013, 97, 2145-2154, doi: 10.3168/jds.2013-7163.
  • 6. Bergmann P.: Subclinical ketosis – an underestimated profit killer in dairy cattle. Tierärztliche Umschau 2018, 73, 12, 462-467.
  • 7. Brunner N., Groeger S., Raposo J. C., Bruckmaier R. M., Gross J. J.: Prevalence of subclinical ketosis and production diseases in dairy cows in Central and South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Translate Basic Science to Industry Innovation 2018, doi: 10.1093/tas/txy102.
  • 8. Caré S., Trevisib E., Minutib A., Ferrarib A., Loorc J. J., Calamarib L.: Plasma fructosamine during the transition period and its relationship with energy metabolism and inflammation biomarkers in dairy cows. Livestock Science 2018, 216, 138-147, doi: 10.1111/jvim.15049.
  • 9.Deniz A.: Treatment of subclinical ketosis: The silent profit robber. 21st International Congress of Hungarian Association for Buiatrics, Sümeg, Hungary, 11-15 October, 2011. Oral Presentation.
  • 10. Deniz A., Watanapongchati S., Aiumlamai S.: Effect of original combination of butafosfan and vitamin B12 and generics from Asia on reproduction parameters in cattle. XXVI World Buiatrics Congress, Santiago, Chile, November 14-18, 2010. P102.
  • 11. Dohoo I. R., Martin S. W.: Subclinical ketosis: Prevalence and associations with production and disease. Can. J. Comp. Med. 1984, 48, 1-5.
  • 12. Drackley J. K.: Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259-2273, doi: 10.3168/jds.s0022-0302(99)75474-3.
  • 13. Duffield T. F.: Subclinical ketosis in lactating dairy cattle. Clin. North Am. Food Anim. Pract. 2000, 16, 231-253, doi: 10.1016/S0749-0720(15)30103-1.
  • 14. Duffield T. F., Kelton D. F., Leslie K. E., Lissemore K. D., Lumsden J. H.: Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Can. Vet. J. 1997, 38, 713-718.
  • 15. Duffield T. F., Lissemore K. D., McBride B. W., Leslie K. E.: Impact of hyperketonaemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571-580, doi: 10.3168/jds.2008-1507.
  • 16. Duffield T. F., Sandals D., Leslie K. E., Lissemore K., McBride B. W., Lumsden J. H., Dick P., Bagg R.: Efficacy of Monensin for the Prevention of Subclinical Ketosis in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2866-2873, doi:10.3168/jds.S0022-0302(98)75846-1.
  • 17. Fürll M., Deniz A., Westphal B., Illing C., Constable P. D.: Effect of multiple intravenous injections of butaphosphan and cyanocobalamin on the metabolism of periparturient dairy cows. J. Dairy Sci. 2010, 93, 4155-4164, doi: 10.3168/jds.2009-2914.
  • 18. Gohary K., Overton M. W., Von Massow M., LeBlanc S. J., Lissemore K. D., Duffield T. F.: The cost of a case of subclinical ketosis in Canadian dairy herds. Can. Vet. J. 2016, 57, 728-732.
  • 19. Gordon J. L., Duffield T. F., Herdt T. H., Kelton D. F., Neuder L., LeBlanc S. J.: Effects of a combination butaphosphan and cyanocobalamin product and insulin on ketosis resolution and milk production. J. Dairy Sci. 2016, 100, 2954-2966, doi: 10.3168/jds.2016-11925.
  • 20. Gordon J. L., LeBlanc S. J., Kelton D. F., Herdt T. H., Neuder L., Duffield T. F.: Randomized clinical field trial on the effects of butaphosphan cyanocobalamin and propylene glycol on ketosis resolution and milk production. J. Dairy Sci. 2017, 100, 3912-3921, doi: 10.3168/jds.2016-11926.
  • 21. Green B. L., McBride B. W., Sandals D., Leslie K. E., Bagg R., Dick P.: The Impact of a Monensin Controlled-Release Capsule on Subclinical Ketosis in the Transition Dairy Cow. J. Dairy Sci. 1999, 82, 333-342, doi: 10.3168/jds.S0022-0302(99)75240-9.
  • 22. Grimard B., Freret S., Chevallier A., Pinto A., Ponsart C., Humblot P.: Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Animal Reproduction Science 2006, 91, 31-44, doi: 10.1016/j.anireprosci.2005.03.003.
  • 23. Grummer R. R.: Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 1995, 73, 2820-2833, doi:10.2527/1995.7392820x.
  • 24. Gustafsson A. H., Andersson L., Emanuelson U.: Effect of hyperketonemia, feeding frequency and intake of concentrate and energy on milk yield in dairy cows. Animal Production 1993, 56, 51-60, doi: 10.1017/S0003356100006152.
  • 25. Herdt T. H.: Ruminant adaptation to NEB: Influences on the etiology of ketosis and fatty liver. Vet. Clin. North Am. Food Anim. Pract. 2000, 16, 215-230, doi: 10.1016/S0749-0720(15)30102-X.
  • 26. Iwersen M., Falkenberg U., Voigtsberger R., Forderung D., Heuwieser W.: Evaluation of an electronic cow side test to detect subclinical ketosis in dairy cows. J. Dairy Sci. 2009, 92, 1-7, doi: 10.3168/jds.2008-1795.
  • 27. Jordan E. R., Fourdraine R. H.: Characterization of the management practices of the top milk producing herds in the country. J. Dairy Sci. 1993, 76, 3247-3256, doi: 10.3168/jds.S0022-0302(93)77661-4.
  • 28. Kaufman E. I., LeBlanc S. J., McBride B. W., Duffield T. G., DeVries T. J.: Association of rumination time with subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 5604-5618, doi: 10.3168/jds.2015-10509.
  • 29. Khol J. L., Freigassner K., Stanitznig A., Tichy A., Wittek T.: Evaluation of a handheld device for the measurement of beta-hydroxybutyrate in capillary blood obtained by the puncture of the vulva as well as in venous whole blood in cattle. Polish Journal of Veterinary Sciences 2019, 22, 557-564, doi: 10.24425/pjvs.2019.129964.
  • 30. Kolk J. H., Gross J. J., Gerber V., Bruckmaier R. M.: Disturbed bovine mitochondrial lipid metabolism: a review. Veterinary Quarterly 2017, 37, 262-273, doi: 10.1080/01652176.2017.1354561.
  • 31. Kremer W. D. J., Noordhuizen-Stassen E. N., Grommers F. J., Schukkken Y. K., Heringa R., Brand A., Burvenich C.: Severity of experimental Escherichia coli mastitis in ketonemic and nonketonemic dairy cows. J. Dairy Sci. 1993, 76, 3428-3436, doi: 10.3168/jds.S0022-0302(93)77681-X.
  • 32. LeBlanc S. J.: Monitoring metabolic health of dairy cattle in the transition period. J. Rep. Dev. 2010, 56, 29-35, doi: 10.1262/jrd.1056s29.
  • 33. LeBlanc S. J.: Review: Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal 2020, 14, p. s44-s54, doi: 10.1017/S1751731119003227.
  • 34. LeBlanc S. J., Leslie K. E., Duffield T. D.: Metabolic predictors of DA in dairy cattle. J. Dairy Sci. 2005, 88, 159-170, doi: 10.3168/jds.S0022-0302(05)72674-6.
  • 35. McArt J. A. A., Nydam D. V., Oetzel G. R.: Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 5056-5066, doi: 10.3168/jds.2012-5443.
  • 36. McArt J. A. A., Nydam D. V., Oetzel G. R., Guard C. L.: An economic analysis of hyperketonemia testing and propylene glycol treatment strategies in early lactation dairy cattle. Preventive Veterinary Medicine. 2014, 117, 170-179, doi: 10.1016/j.prevetmed.2014.06.017.
  • 37. McArt J. A. A., Nydam D. V., Overton M. W.: Hyperketonemia in early lactation dairy cattle. A deterministic estimate of component and total cost per case. J. Dairy Sci. 2015, 98, 2043-2054, doi: 10.3168/jds.2014-8740.
  • 38. McGuffey R. K.: A 100-Year Review: Metabolic modifiers in dairy cattle nutrition. J. Dairy Sci. 2017, 100, 10113-10142, doi: 10.3168/jds.2017-12987.
  • 39. Melendez P., Goff J. P., Risco C. A., Archbald L. F., Littell R., Donovan G. A.: Incidence of subclinical ketosis in cows supplemented with a monensin controlled-release capsule in Holstein cattle, Florida, USA. Preventive Veterinary Medicine 2006, 73, 33-42, doi: 10.1016/j.prevetmed.2005.08.022.
  • 40. Mezzetti M., Minuti A., Piccioli-Cappelli F., Amadori M., Bionaz M., Trevisi E.: The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J. Dairy Sci. 2019, 102 (10), doi: 10.3168/jds.2019-16497.
  • 41. Miettinen P. V. A., Setala J. J.: Relationships between subclinical ketosis, milk production and fertility in Finnish dairy cattle. Preventive Veterinary Medicine 1993, 17, 1-8, doi: 10.1016/0167-5877(93)90049-Y.
  • 42. Morton J. M., Auldist M. J., Douglas M. L., Macmillan K. L.: Associations between milk protein concentration, milk yield, and reproductive performance in dairy cows. J. Dairy Sci. 2016, 99, 10033-10043, doi: 10.3168/jds.2016-11275.
  • 43. Mostert P. F., Bokkers E. A. M., van Middelaar C. E., Hogeveen H., de Boer I. J. M.: Estimating the economic impact of subclinical ketosis in dairy cattle using a dynamic stochastic simulation model. Animal 2017, 1-10, doi: 10.1017/S1751731117001306.
  • 44. Nuber U., Dorland H. A.van., Bruckmaier R. M.: Effects of butafosfan with or without cyanocobalamin on the metabolism of early lactating cows with subclinical ketosis. Journal of Animal Physiology and Animal Nutrition 2016, 100, 146-155, doi: 10.1111/jpn.12332.
  • 45. Oetzel G. R.: Monitoring and testing dairy herds for metabolic disease. Vet. Clin. Food Anim. 2004, 20, 651-674, doi: 10.1016/j.cvfa.2004.06.006.
  • 46. Overton T. R., McArt A. A., Nydam D. V.: A 100-Year Review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 2017, 100, 10398-10417, doi: 10.3168/jds.2017-13054.
  • 47. Putman A. K., Brown J. L., Gandy J. C., Wisnieski L., Sordillo L. M.: Changes in biomarkers of nutrient metabolism, inflammation, and oxidative stress in dairy cows during the transition into the early dry period. J. Dairy Sci. 2018, 101, 9350-9359, doi: 10.3168/jds.2018-14591.
  • 48. Raboisson D., Mounié M., Khenifar E., Maigné E.: The economic impact of subclinical ketosis at the farm level: Tackling the challenge of over-estimation due to multiple interactions. Prev. Vet. Med. 2015, 122, 417-425, doi: 10.1016/j.prevetmed.2015.07.010.
  • 49. Raboisson D., Mounié M., Maigné E.: Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci. 2014, 97, 7547-7563, doi:10.3168/jds.2014-8237.
  • 50. Ribeiro E. S., Lima F. S., Greco L. F., Bisinotto R. S., Monteiro A. P. A., Favoreto M., Ayres H., Marsola R. S., Martinez N., Thatcher W. W., Santos J. E. P.: Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates. J. Dairy Sci. 2013, 96, 5682-5697, doi: 10.3168/jds.2012-6335.
  • 51. Roberts T., Chapinal N., LeBlanc S. J., Kelton D. F., Dubuc J., Duffield T. F.: Metabolic parameters in transition cows as indicators for early-lactation culling risk. J. Dairy Sci. 2012, 95, 3057-3063, doi: 10.3168/jds.2011-4937.
  • 52. Roche J. R., Burke C. R., Crookenden M. A., Heiser A., Loor J. L., Meier S., Mitchell M. D., Phyn C. V. C., Turner S. A.: Fertility and the transition dairy cow. Reproduction, Fertility and Development 2018, 30, 85-100, doi: 10.1071/RD17412.
  • 53. Rollin E., Berghaus R. D., Rapnicki P., Godden S. M., Overton M. W.: The effect of injectable butaphosphan and cyanocobalamin on postpartum serum β-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. J. Dairy Sci. 2009, 93, 978-987, doi: 10.3168/jds.2009-2508.
  • 54. Ruprechter G., Adrien M. L., Larriestra A., Meotti O., Batista C., Meikle A., Noro M.: Metabolic predictors of peripartum diseases and their association with parity in dairy cows. Research in Veterinary Science 2018, 118, 191-198, doi: 10.1016/j.rvsc.2018.02.005.
  • 55. Rutherford A. J., Oikonomou G., Smith R. F.: The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle. J. Dairy Sci. 2015, 99, 4808-4815, doi: 10.3168/jds.2015-10154.
  • 56. Şahal M., Deniz A., Vural R., Kuplulu S., Polat I., Çolakoglu Ç., Ocal N., Macun Ceyhun H., Pekcan M., Ocak M.: Evaluation of the Effect of Different Doses of Butaphosphan and Cyanocobalamin Combination in Dairy Cattle with Subclinical Ketosis. Kafkas Univ. Vet. Fak. Derg. 2017, 23, 349-356, doi: 10.9775/kvfd.2016.16651.
  • 57. Santschi D. E., Lacroix R., Durocher J., Duplessis M., Moore R. K., Lefebvre D. M.: Cows measured by Fourier-transform infrared analysis in Dairy Herd Improvement milk samples and association with milk yield and components. J. Dairy Sci. 2016, 99, 9263-9270, doi: 10.3168/jds.2016-11128.
  • 58. Schirmann K., Weary D. M., Heuwieser W., Chapinal N., Cerri R. L., von Keyserlingk M. A.: Short communication: Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. J. Dairy Sci. 2016, 99, 9917-9924, doi: 10.3168/jds.2015-10548.
  • 59. Seifi H. A., LeBlanc S. J., Leslie K. E., Duffield T.: Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet. J. 2011, 188, 216-220, doi: 10.1016/j.tvjl.2010.04.007.
  • 60. Şentürk S., Cihan H., Mecitoğlu Z., Çatık S., Demir G., Kasap S., Topal O.: Prevalence of ketosis in dairy herds in Marmara, Aegean and Mediterranean regions of Turkey. Ankara Üniv. Vet. Fak. Derg. 2016, 63, 283-288.
  • 61. Sheldon I. M.: The postpartum uterus. Vet. Clin. Food Anim. 2004, 20, 569-591, doi: 10.1016/j.cvfa.2004.06.008.
  • 62. Suthar V. S., Canelas-Raposo J., Deniz A., Heuwieser W.: Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 2013, 96, 2925-2938, doi: 10.3168/jds.2012-6035.
  • 63. Urh C., Denißen J., Gerster E., Kraus N., Stamer E., Heitkönig B., Spieker H., Sauerwein H.: Short communication: Pro- and antioxidative indicators in serum of dairy cows during late pregnancy and early lactation: Testing the effects of parity, different dietary energy levels, and farm. J. Dairy Sci. 2019, 102, 6672-6678, doi: 10.3168/jds.2019-16248.
  • 64. Uyarlar C., Çetingül I. S., Gültepe E. E., Sial A. R., Bayram I.: Effects of Subclinical and Clinical Ketosis on The Incidence of Mastitis, Metritis, Culling Rate and Some Hematological Parameters in Dairy Cows. Kocatepe Vet. J. 2018, 11, 186-193, doi: 10.30607/kvj.419839.
  • 65. Ülker H., Bakır G.: Culling Reasons and Affecting Factors in a Holstein Dairy Herd Raised in Southeast Region of Turkey. YYÜ Tar. Bil. Derg. 2013, 23, 134-140.
  • 66. Vanholder T., Papen J., Bemers R., Vertenten G., Berge A. C. B.: Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands. J. Dairy Sci. 2015, 98, 880-888, doi: 10.3168/jds.2014-8362.
  • 67. Walsh R. B., Walton J. S., Kelton D. F., LeBlanc S. J., Leslie K. E., Duffield T. F.: The Effect of Subclinical Ketosis in Early Lactation on Reproductive Performance of Postpartum Dairy Cows. J. Dairy Sci. 2007, 90, 2788-2796, doi: 10.3168/jds.2006-560.
  • 68. Whitaker D. A., Kelly J. M., Smith E. J.: Subclinical ketosis and serum betahydroxybutyrate levels in dairy cattle. Br. Vet. J. 1983, 139, 462-463, doi: 10.1016/s0007-1935(17)30393-7.
  • 69. Wisnieskia L., Norbya B., Pierceb S. J., Becker T., Gandya J. C., Sordilloa L. M.: Predictive models for early lactation diseases in transition dairy cattle at dry-off. Preventive Veterinary Medicine 2019, 163, 68-78, doi: 10.1016/j.prevetmed.2018.12.014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.