Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 67 | 3 |
Tytuł artykułu

Effect of green tea extract-enriched diets on insulin and leptin levels, oxidative stress parameters and antioxidant enzymes activities in obese mice

Treść / Zawartość
Warianty tytułu
Języki publikacji
Green tea and green tea extracts (GTE) are often incorporated into diet intended to weight reduction, although the information about their efficacy in obese individuals is insufficient. The present study was designed to follow up the effect of defi ned and standardized GTE in mice with obesity induced by monosodium L-glutamate. Obese mice were fed with GTE-supplemented diet in three dosage regimens: 28-day and 3-day intake of 1 g GTE in 1 kg of diet and 28-day intake of 0.1 g GTE in 1 kg of diet. The information on body weight, food intake, oxidation stress parameters in blood and antioxidant enzymes activity in liver and small intestine was obtained. High doses of GTE decreased the specifi c activities of glutathione reductase and catalase and increased concentrations of malondialdehyde in blood. Specific activities of antioxidant enzymes in the liver and small intestine were not altered after GTE treatment except the decrease of NAD(P)H:quinone oxidoreductase activity. Our results showed that GTE did not affect average body weight and did not markedly improve antioxidant status in glutamate-induced obese mice. Moreover, intake of high doses of GTE made antioxidant defense in obese animals even worse.
Słowa kluczowe
Opis fizyczny
  • Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, CZ-500 05, Hradec Kralove, Czech Republic
  • Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, CZ-500 05, Hradec Kralove, Czech Republic
  • Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, CZ-500 05, Hradec Kralove, Czech Republic
  • Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, CZ-500 05, Hradec Kralove, Czech Republic
  • Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, CZ-500 05, Hradec Kralove, Czech Republic
  • 1. Afrin S., Gasparrini M., Forbes-Hernandez T.Y., Reboredo-Rodriguez P., Mezzetti B., Varela-Lopez A., Giampieri F., Battino M., Promising health benefits of the strawberry: A focus on clinical studies. J. Agric. Food Chem., 2016, 64, 4435–4449.
  • 2. Akaberi M., Hosseinzadeh H., Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytotherap. Res., 2016, 30, 540–556.
  • 3. Alarcon-Aguilar F.J., Zamilpa A., Perez-Garcia M.D., Almanza-Perez J.C., Romero-Nunez E., Campos-Sepulveda E.A., Vazquez-Carrillo L.I., Roman-Ramos R., Effect of Hibiscus sabdariffa on obesity in MSG mice. J. Ethnopharmacol., 2007, 114, 66–71.
  • 4. Amiot M.J., Riva C., Vinet A., Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obesity Rev., 2016, 17, 573–586.
  • 5. Bartikova H., Skalova L., Valentova K., Matouskova P., Szotakova B., Martin J., Kvita V., Bousova I., Effect of oral administration of green tea extract in various dosage schemes on oxidative stress status of mice in vivo. Acta Pharm., 2015, 65, 65–73.
  • 6. Boušová I., Matoušková P., Bártíková H., Szotáková B. Hanušová V., Tománková V., Anzenbacherová E., Lišková B., Anzenbacher P., Skálová L., Influence of diet supplementation with green tea extract on drug-metabolizing enzymes in a mouse model of monosodium glutamate-induced obesity. Eur. J. Nutr., 2016, 55, 361–371.
  • 7. Chacko S.M., Thambi P.T., Kuttan R., Nishigaki I., Beneficial effects of green tea: a literature review. Chin Med, 2010, 5, 13.p
  • 8. Cullen J.J., Hinkhouse M.M., Grady M., Gaut A.W., Liu J., Zhang Y.P., Weydert C.J., Domann F.E., Oberley L.W., Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer. Res., 2003, 63, 5513–5520
  • 9. Del Rio D., Stewart A.J ., Pellegrini N., A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 2005, 15, 316–328.
  • 10. Fitzsimmons S.A., Workm an P., Grever M., Paull K., Camalier R., Lewis A.D., Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. J. Natl. Cancer Inst., 1996, 88, 259–269.
  • 11. Flohé L., Günzler W.A.,Assays of glutathione peroxidase. Methods Enzymol., 1984, 105, 114–121.
  • 12. Fujimoto M., Tsuneyama K.,Fujimoto T., Selmi C., Gershwin M.E., Shimada Y., Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Dig. Liver Dis., 2012a, 44, 767–774.
  • 13. Fujimoto M., Tsuneyama K.,Chen S.Y., Nishida T., Chen J.L., Chen Y.C., Fujimoto T., Imura J., Shimada Y., Study of the effects of monacolink and other constituents of red yeast rice on obesity, insulin-resistance, hyperlipidemia, and nonalcoholic steatohepatitis using a mouse model of metabolic syndrome. Evid. Based Complement. Alternat. Med., 2012b, 892697.
  • 14. Góth L., A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 1991, 196, 143–151.
  • 15. Habig W.H., Pabst M.J., Jak oby W.B., Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249, 7130–7139.
  • 16. Handy D.E., Lubos E., Yang Y., Galbraith J.D., Kelly N., Zhang Y.Y., Leopold J.A., Loscalzo J., Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J. Biol. Chem., 2009, 284, 11913–11921.
  • 17. Johnson R., Bryant S., Hunt ley A.L., Green tea and green tea catechin extracts: an overview of the clinical evidence. Maturitas, 2012, 73, 280–287.
  • 18. Khan N., Afaq F., Saleem M. , Ahmad N., Mukhtar H., Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res., 2006, 66, 2500–2505.
  • 19. Khan S.A., Priyamvada S., A rivarasu N.A., Khan S., Yusufi A.N., Influence of green tea on enzymes of carbohydrate metabolism, antioxidant defense, and plasma membrane in rat tissues. Nutrition, 2007, 23, 687–695.
  • 20. Khan S.G., Katiyar S.K., Ag arwal R., Mukhtar H., Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res., 1992, 52, 4050– –4052.
  • 21. Lambert J.D., Lee M.J., Dia mond L., Ju J., Hong J., Bose M., Newmark H.L., Yang C.S., Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab. Dispos., 2006, 34, 8–11.
  • 22. Lambert J.D., Lee M.J., Lu H., Meng X., Hong J.J., Seril D.N., Sturgill M.G., Yang C.S., Epigallocatechin-3-gallate is absorbed but extensively glucuronidated followingoral administration to mice. J. Nutr., 2003, 133, 4172–4177.
  • 23. Lin Y.L., Cheng C.Y., Lin Y .P., Lau Y.W., Juan I.M., Lin J.K., Hypolipidemic effect of green tea leaves through induction of antioxidant and phase II enzymes including superoxide dismutase, catalase, and glutathione S-transferase in rats. J. Agric. Food Chem., 1998, 46, 1893–1899.
  • 24. Martin M.A., Serrano A.B., Ramos S., Pulido M.I., Bravo L., Goya L., Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. J. Nutr. Biochem., 2010, 21, 196–205.
  • 25. Matouskova P., Bartikova H. , Bousova I., Levorova L., Szotakova B., Skalova L., Drug-metabolizing and antioxidant enzymes in monosodium L-glutamate obese mice. Drug Metab. Dispos., 2015, 43, 258–265.
  • 26. Matouskova P., Bartikova H. , Bousova I., Szotakova B., Martin J., Skorkovska J., Hanusova V., Tomankova V., Anzenbacherova E., Liskova B., Anzenbacher P., Skalova L., Effect of defi ned green tea extract in various dosage schemes on drug-metabolizing enzymes in mice in vivo. J. Funct. Foods, 2014, 10, 327–335.
  • 27. Matyskova R., Maletinska L. , Maixnerova J., Pirnik Z., Kiss A., Zelezna B., Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol. Res., 2008, 57, 727–734.
  • 28. Murakami A., Dose-dependentfunctionality and toxicity of green tea polyphenols in experimental rodents. Arch. Biochem. Biophys., 2014, 557, 3–10.
  • 29. Na H.K., Surh Y.J., Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol., 2008, 46, 1271–1278.
  • 30. Noeman S.A., Hamooda H.E., Baalash A.A., Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol. Metab. Syndr., 2011, 3, 17–22.
  • 31. Olney J.W., Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 1969, 164, 719–721.
  • 32. Osei-Hyiaman D., Liu J., Zhou L., Godlewski G., Harvey-White J., Jeong W.I., Batkai S., Marsicano G., Lutz B., Buettner C., Kunos G., Hepatic CB(1) receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J. Clin. Invest., 2008, 118, 3160–3169.
  • 33. Park H.J., DiNatale D.A., C hung M.Y., Park Y.K., Lee J.Y., Koo S.I., O’Connor M., Manautou J.E., Bruno R.S., Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J. Nutr. Biochem., 2011, 22, 393–400.
  • 34. Picklo M., Claycombe K.J., Meydani M., Adipose Dysfunction, Interaction of Reactive Oxygen Species, and Inflammation. Adv. Nutr., 2012, 3, 734–735.
  • 35. Ramesh E., Elanchezhian R.,Sakthivel M., Jayakumar T., Senthil Kumar R.S., Geraldine P., Thomas P.A., Epigallocatechin gallate improves serum lipid profile and erythrocyte and cardiac tissue antioxidant parameters in Wistar rats fedan atherogenic diet. Fundam. Clin. Pharmacol., 2008, 22, 275–284.
  • 36. Savini I., Catani M.V., Eva ngelista D., Gasperi V., Avigliano L., Obesity-associated oxidative stress: strategies finalized to improve redox state. Int. J. Mol. Sci., 2013, 14, 10497–10538.
  • 37. Seeley S.K., Poposki J.A., Maksimchuk J., Tebbe J., Gaudreau J., Mannervik B., Bull A.W., Metabolism of oxidized linoleic acid by glutathione transferases: peroxidase activity toward 13-hydroperoxyoctadecadienoic acid. Biochim. Biophys. Acta, 2006, 1760, 1064–1070.
  • 38. Tomankova V., Liskova B., S kalova L., Bartikova H., Bousova I., Jourova L., Anzenbacher P., Ulrichova J., Anzenbacherova E., Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity. Life Sci., 2015, 133, 15–20.
  • 39. Wang Y., Chun O.K., Song W. O., Plasma and dietary antioxidant status as cardiovascular disease risk factors: A Review of human studies. Nutrients, 2013, 5, 2969–3004.
  • 40. Wiegand H., Boesch-Saadatmandi C., Regos I., Treutter D., Wolffram S., Rimbach G., Effects of quercetin and catechin on hepatic glutathione-S transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and antioxidant enzyme activity levels in rats. Nutr. Cancer, 2009, 61, 717–722.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.