PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 2 |

Tytuł artykułu

Bat community responses to structural habitat complexity resulting from management practices within different land use types - a case study from north-eastern Germany

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study we evaluated how management practices, structural habitat parameters and arthropod availability affect bat activity, species richness and species diversity (estimated by Shannon's diversity index H') in a cultural landscape composed by a mosaic of different habitats in Brandenburg (Germany). Over a study period of two years (2012–2013), a standardised acoustic monitoring was conducted on 12 sampling sites comprising different land use types in forests (pine, mixed and deciduous forest) and agricultural areas (arable land and grassland). The focus was on the effect of small-scale changes in structural habitat parameters resulting from management practices within one-and-the-same land use type. We applied a paired sampling design and compared two (forest) and three (agricultural areas) sampling sites (complexity categories) per land use type. An effect of structural complexity was tested using parametric and non-parametric analyses. Sampling sites differ in a complexity index derived from vegetation measurements related to: a) vertical vegetation structure (pine forests), b) tree species composition (mixed forests), c) tree age (deciduous forests), d) crop type (arable land), and e) management intensity (grassland). Within the pine and mixed forest, management practices leading to an increase in structural habitat complexity were associated with a significant increase in bat activity, species richness, and species diversity (H'). This effect is only partially explained by increased prey abundance. On grassland, increased bat abundance is associated with low-intensity management practices. This effect is explainable by an increase in arthropod abundance associated with structural complexity but no additional effect of structural complexity beyond that. On arable land, the difference in structural complexity among different crops (and not prey abundance) significantly affects bat communities. Our approach employed proxy measures of habitat quality to estimate which management practices within the study area theoretically result in suitable and available habitats to meet the requirements of local bat species. Thus, our findings have implications for forest and agricultural management. Even minor changes in silvicultural management (understory development in pine monocultures and increased percentage of deciduous trees in mixed forests) may lead to a significant increase in forest habitat quality for bats. The findings also stress the importance of extensive management practices in grassland, as well as structure-rich crops on arable land to achieve a more environmentally sustainable farmland management.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.387-405,fig.,ref.

Twórcy

autor
  • Systematic Zoology Division, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
autor
  • Systematic Zoology Division, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
  • Department of Molecular Parasitology, Institute for Biology, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
  • Research Group Ecology and Evolution of Molecular Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strase 17, 10315 Berlin, Germany
autor
  • Systematic Zoology Division, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Bibliografia

  • 1. Adams, A. M., M. K. Jantzen, R. M. Hamilton, and M. B. Fenton. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3: 992–998. Google Scholar
  • 2. Ahlén, I. 2004. Heterodyne and time-expansion methods for identification of bats in the field and through sound analysis. Pp. 72–79, in Bat echolocation research: tools, techniques, and analysis ( R. M. Brigham, E. K. V. Kalko, G. Jones, S. Parsons, and H. J. G. A Limpens, eds.). Bat Conservation International, Austin, Texas, 167 pp. Google Scholar
  • 3. Aldridge, H. D. J. N., and I. L. Rautenbach. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
  • 4. Ancillotto, L., L. Cistrone, F. Mosconi, G. Jones, L. BoiTani, and D. Russo. 2015. The importance of non-forest landscapes for the conservation of forest bats: lessons from barbastelles (Barbastella barbastellus). Biodiversity and Con servation, 24: 171–185. Google Scholar
  • 5. Barataud, M. 2012. Ecologie acoustique des chiroptères d'Europe. Biotope Édition, Mèze. Muséum National d'Histoire Naturelle, Paris, 344 pp. Google Scholar
  • 6. Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67: 1–48. Google Scholar
  • 7. Burger, J. 2006. Bioindicators: types, development, and use in ecological assessment and research. Environmental Bioindicators, 1: 22–39. Google Scholar
  • 8. Cavard, X., S. E. Macdonald, Y. Bergeron, and H. Y. Chen, 2011. Importance of mixed woods for biodiversity conservation: evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environment al Reviews, 19 :142–161. Google Scholar
  • 9. Carnus, J. M., J. Parrotta, E. Brockerhoff, M. Arbez, H. Jactel, A. Kremer, D. Lamb, K. O'Hara, and B. Walters. 2006. Planted forests and biodiversity. Journal of Forestry, 104: 65–77. Google Scholar
  • 10. Caro, T. 2010. Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington, 400 pp. Google Scholar
  • 11. Carvalho, F., M. E. Fabián, and J. O. Menegheti, 2013. Vertical structure of an assemblage of bats (Mammalia: Chiroptera) in a fragment of Atlantic Forest in Southern Brazil. Zoologia (Curitiba), 30: 491–498. Google Scholar
  • 12. Crampton, L. H., and R. M. Barclay. 1998. Selection of roosting and foraging habitat by bats in different‐aged aspen mixed wood stands. Conservation Biology, 12: 1347–1358. Google Scholar
  • 13. Defries, R. S., J. A. Foley, and G. P. Asner. 2004. Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and the Environment, 2: 249–257. Google Scholar
  • 14. Denzinger, A., and H.-U. Schnitzler. 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology, 4(164): 1–15. Google Scholar
  • 15. Dietz, M., and J. B. PIR. 2009. Distribution and habitat selection of Myotis bechsteinii in Luxembourg: implications for forest management and conservation. Folia Zoologica, 58: 327–340. Google Scholar
  • 16. Dietz, M., and O. Simon. 2008. Fledermäuse im Nationalpark Kellerwald-Edersee. Vom Arteninventar zur Zönosen forschung. Forschungsberichte des Nationalpark Keller wald-Edersee, Bad Wildungen, 87 pp. Google Scholar
  • 17. Fenton, M. B. 1990. The foraging behaviour and ecology of animal-eating bats. Canadian Journal of Zoology (London), 68: 411–422. Google Scholar
  • 18. Fischer, J., J. Stott, B. S. Law, M. D. Adams, and R. I. ForRester. 2009. Designing effective habitat studies: quantifying multiple sources of variability in bat activity. Acta Chiropterologica, 11: 127–137. Google Scholar
  • 19. Flaquer, C., and X. Puig Montserrat. 2012. Proceedings of the International Symposium on the Importance of Bats as Bioindicators. Museum of Natural Sciences Edicions, Granoller, Spain, 102 pp. Google Scholar
  • 20. Foley, J. A., R. Defries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, et al. 2005. Global consequences of land use. Science, 309(5734): 570–574. Google Scholar
  • 21. Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27: 233–249. Google Scholar
  • 22. Fritsch, G., and A. Bruckner. 2014. Operator bias in software-aided bat call identification. Ecology and Evolution, 4: 2703–2713. Google Scholar
  • 23. Fuentes, Montemayor E., D. Goulson, and K. J. Park. 2011. Pipistrelle bats and their prey do not benefit from four widely applied agri-environment management prescriptions. Biological Conservation, 144: 2233–2246. Google Scholar
  • 24. García, Morales R., E. I. Badano, and C. E. Moreno. 2013. Response of Neotropical bat assemblages to human land use. Conservation Biology, 27: 1096–1106. Google Scholar
  • 25. Hayes, J. P. 1997. Temporal variation in activity of bats and the design of echolocation-monitoring studies. Journal of Mammalogy, 78: 514–524. Google Scholar
  • 26. Heer, K., M. Helbig Bonitz, R. G. Fernandes, M. Mello, and E. K. V. Kalko. 2015. Effects of land use on bat diversity in a complex plantation — forest landscape in northeastern Brazil. Journal of Mammalogy, 96: 720–731. Google Scholar
  • 27. Heim, O., J. T. Treitler, M. Tschapka, M. Knörnschild, and K. Jung. 2015. The importance of landscape elements for bat activity and species richness in agricultural areas. PLoS ONE, 10: e0134443. Google Scholar
  • 28. Helbig, Bonitz M., S. W. Ferger, K. Böhning Gaese, M. Tschapka, K. Howell, and E. K. V. Kalko. 2015. Bats are not birds — different responses to human land-use on a tropical mountain. Biotropica, 47: 497–508. Google Scholar
  • 29. Jones, G., D. S. Jacobs, T. H. Kunz, M. R. Willig, and P. A. Racey. 2009. Carpenoctem: the importance of bats as bioindicators. Endangered Species Research, 8: 93–115. Google Scholar
  • 30. Jung, K., S. Kaiser, S. Böhm, J. Nieschulze, and E. K. V. Kalko. 2012. Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. Journal of Applied Ecology, 49: 523–531. Google Scholar
  • 31. Jung, T. S., I. D. Thompson, R. D. Titman, and A. P. Apple John. 1999. Habitat selection by forest bats in relation to mixed-wood stand types and structure in central Ontario. The Journal of Wildlife Management, 63: 1306–1319. Google Scholar
  • 32. Kalcounis, M. C., K. A. Hobson, R. M. Brigham, and K. R. Hecker. 1999. Bat activity in the boreal forest: importance of stand type and vertical strata. Journal of Mammalogy, 80: 673–682. Google Scholar
  • 33. Kaňuch, P., Š. Danko, M. Cel'uch, A. Krištín, P. Pjenčák, Š. Matis, and J. Šmídt. 2008. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mammalian Biology, 73: 147–155. Google Scholar
  • 34. Kruess, A. and T. Tscharntke. 2002. Contrasting responses of plant and insect diversity to variation in grazing intensity. Biological Conservation, 106: 293–302. Google Scholar
  • 35. Kubista, C. E., and A. Bruckner. 2017. Within-site variability of field recordings from stationary, passively working detectors. Acta Chiropterologica, 19: 189–197. Google Scholar
  • 36. Kunz, T. H., and M. B. Fenton. 2003. Bat ecology. University of Chicago Press, London, 800 pp. Google Scholar
  • 37. Kunz, T. H., E. Braun de Torrez, D. Bauer, T. Lobova, and T. H. Fleming. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223: 1–38. Google Scholar
  • 38. Kusch, J., C. Weber, S. Idelberger, and T. Koob, 2004. For aging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zoologica, 53: 113–128. Google Scholar
  • 39. Lacoeuilhe, A., N. Machon, J. F. Julien, and C. Kerbiriou. 2016. Effects of hedgerows on bats and bush crickets at different spatial scales. Acta Oecologia, 71: 61–72. Google Scholar
  • 40. Lacki, M. J., S. K. Amelon, and M. D. Baker. 2007. Foraging ecology of bats in forests. Pp. 83–127, in Bats in forests: conservation and management ( M. J. Lacki, J. P. Hayes, and A. Kurta, eds.). John Hopkins University Press, Baltimore, Maryland, 329 pp. Google Scholar
  • 41. Landres, P. B., J. Verner, and J. W. Thomas. 1988. Ecological uses of vertebrate indicator species: a critique. Conservation Biology, 2: 316–328. Google Scholar
  • 42. Lasch, P., M. Lindner, M. Erhard, F. Suckow, and A. Wenzel. 2002. Regional impact assessment on forest structure and functions under climate change — the Brandenburg case study. Forest Ecology and Management, 162: 73–86. Google Scholar
  • 43. Leadley, P., H. M. Pereira, R. Alkemade, J. F. Fernandez Manjarrés, V. Proença, J. P. W. , and M. J. Scharlemann, (eds.). 2010. Biodiversity scenarios: projections of 21st century change in biodiversity, and associated ecosystem services: Secretariat of the Convention of Biological Diversity, Montreal, Technical Series No. 50, 132 pp. Google Scholar
  • 44. Lentini, P. E., P. Gibbons, J. Fischer, B. Law, J. Hanspach, and T. G. Martin. 2012. Bats in a farming landscape benefit from linear remnants and unimproved pastures. PLoS ONE, 7: e48201. Google Scholar
  • 45. Mcaleece, N., J. D. G. Gage, P. J. D Lambshead, and G. L. J. Paterson. 1997. BioDiversity Professional statistics analysis software. Jointly developed by the Scottish Association for Marine Science and the Natural History Museum, London. Google Scholar
  • 46. Mcgeoch, M. A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews of the Cambridge Philosophical Society, 73: 181–201. Google Scholar
  • 47. Mehr, M., R. Brandl, T. Hothorn, F. Dziock, B. Forster, and J. Müller. 2011. Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mammalian Biology, 76: 451–460. Google Scholar
  • 48. Meschede, A., and K. G. Heller. 2000. Ökologie und Schutz von Fledermäusen in Wäldern: unter besonderer Berücksichtigung wandernder Arten. Schriftenreihe für Landschaftspflege und Naturschutz, 66. Federal Agency for Nature Conservation, Bonn-Bad Godesberg, 374 pp. Google Scholar
  • 49. MLUR [Ministry of Agriculture, Environment and Spatial Planning of the State of Brandenburg]. 2000. Landscape programme for Brandenburg State. Available at http://www.mlul.brandenburg.de/media_fast/4055/lapro.pdf Accessed 3 May 2018. [In German]. Google Scholar
  • 50. Ministry OF Infrastructure and Agriculture, Land BranDenburg. 2013. Facts on forests and forestry in Bran denburg. Available at http://www.mlul.brandenburg.de/ media_fast/4055/Daten-zu-Wald-und-Forstwirtschaft-in-Brandenburg_web.pdf. Accessed 3 May 2018. Google Scholar
  • 51. Moreno, C. E., G. Sánchez Rojas, E. Pineda, and F. Escobar. 2007. Shortcuts for biodiversity evaluation: a review of terminology and recommendations for the use of target groups, bioindicators and surrogates. International Journal of Environment and Health, 1: 71–86. Google Scholar
  • 52. Müller, J., R. Brandl, J. Buchner, H. Pretzsch, S. Seifert, C. Strätz, M. Veith, and B. Fenton. 2013. From ground to above canopy — Bat activity in mature forests is driven by vegetation density and height. Forest Ecology and Management, 306: 179–184. Google Scholar
  • 53. Müller, J., M. Mehr, C. Bässler, M. B. Fenton, T. Hothorn, H. Pretzsch, J. J. Klemmt, and R. Brandl. 2012. Aggregative response in bats: prey abundance versus habitat. Oecologia, 169: 673–684. Google Scholar
  • 54. MUGV [Ministry of Environment, Health and consumer Protection Of the State of Brandenburg]. 2009.Environmental Data Brandenburg 2008/2009. Available at http://www.mlul.brandenburg.de/cms/media.php/lbm1.a.3310.de/udb_eng_ges.pdf . Accessed 3 May 2018. Google Scholar
  • 55. Norberg, U. M., and J. M. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society, 316B: 335–427. Google Scholar
  • 56. Park, K. J. 2015. Mitigating the impacts of agriculture on biodiversity: bats and their potential role as bioindicators. Mammalian Biology, 80: 191–204. Google Scholar
  • 57. Pereira, H. M., P. W. Leadley, V. Proença, R. Alkemade, J. P. Scharlemann, J. F. Fernandez Manjarrés, M. B. Araújo, P. Balvanera, R. Biggs, W. W. L. Cheung, et al. 2010. Scenarios for global biodiversity in the 21st century. Science, 330(6010): 1496–1501. Google Scholar
  • 58. Pfalzer, G., and J. Kusch. 2003. Structure and variability of bat social calls: implications for specificity and individual recognition. Journal of Zoology (London), 261: 21–33. Google Scholar
  • 59. Pocock, M. J., and N. Jennings. 2008. Testing biotic indicator taxa: the sensitivity of insectivorous mammals and their prey to the intensification of lowland agriculture. Journal of Applied Ecology, 45: 151–160. Google Scholar
  • 60. Regnery, B., D. Couvet, L. Kubarek, J. F. Julien, and C. KerBiriou. 2013. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. Ecological Indicators, 34: 221–230. Google Scholar
  • 61. Rodríguez, San Pedro A., and. J. A. Simonetti. 2015a . Does understory clutter reduce bat activity in forestry pine plantations? European Journal of Wildlife Research, 61: 177–179. Google Scholar
  • 62. Rodríguez, San Pedro A., and. J. A. Simonetti. 2015b . The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matrix matter? Landscape Ecology, 30: 1561–1572. Google Scholar
  • 63. Russo, D., and G. Jones. 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 64. Ruczyński, I., and W. Bogdanowicz. 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. Journal of Mammalogy, 86: 921–930. Google Scholar
  • 65. Ruczyński, I., B. Nicholls, C. D. Macleod, and P. A. Racey. 2010. Selection of roosting habitats by Nyctalus noctula and Nyctalus leisleri in Białowieża Forest — adaptive response to forest management? Forest Ecology and Management, 259: 1633–1641. Google Scholar
  • 66. Sattler, T., F. Bontadina, A. Hirzel, and R. Arlettaz. 2007. Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology, 44: 1188–1199. Google Scholar
  • 67. Schittenhelm, S. 2010. Effect of drought stress on yield and quality of maize/sunflower and maize/sorghum intercrops for biogas production. Journal of Agronomy and Crop Science, 196, 253–261. Google Scholar
  • 68. Schnitzler, H.-U. and E. K. V. Kalko. 2001. Echolocation by insect-eating bats. Bioscience, 51: 557–569. Google Scholar
  • 69. Shannon, C. E., and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois, 117 pp. Google Scholar
  • 70. Shiel, C. B., C. M. Mcaney, and J. S. Fairley. 1991. Analysis of the diet of Natterer's bat Myotis nattereri and the common long-eared bat Plecotus auritus in the West of Ireland. Journal of Zoology (London), 223: 299–305. Google Scholar
  • 71. Siemers, B. M., and H.-U. Schnitzler. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429(6992): 657–661. Google Scholar
  • 72. Simmons, N. B. 2005. An Eocene big bang for bats. Science, 307(5709): 527–528. Google Scholar
  • 73. Skalak, S. L., R. E. Sherwin, and R. M. Brigham. 2012. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods in Ecology and Evolution, 3: 490–502. Google Scholar
  • 74. Skiba, R. 2004. Europäische Fledermäuse-Kennzeichen, Echoortung und Detektoranwendung. Neue Brehm-Bücherei, Westarp, 648 pp. Google Scholar
  • 75. Sobek, S., I. Steffan Dewenter, C. Scherber, and T. Tscharntke. 2009. Spatiotemporal changes of beetle communities across a tree diversity gradient. Diversity and Distributions, 15: 660–670. Google Scholar
  • 76. Surlykke, A., and E. K. V. Kalko. 2008. Echolocating bats cry out loud to detect their prey. PLoS ONE, 3: e2036. Google Scholar
  • 77. Swift, S., and P. Racey. 2002. Gleaning as a foraging strategy in Natterer's bat Myotis nattereri. Behavioral Ecology and Sociobiology, 52: 408–416. Google Scholar
  • 78. Taylor, P. J., A. Monadjem, and J. N. Steyn. 2013. Seasonal patterns of habitat use by insectivorous bats in a subtropical African agro-ecosystem dominated by macadamia orchards. African Journal of Ecology, 51: 552–561. Google Scholar
  • 79. Teubner, J., J. Teubner, D. Dolch, and G. Heise(eds.). 2008. Säugetierfauna des Landes Brandenburg — Teil 1: Fledermäuse. Naturschutz und Landschaftspflege in Bran denburg, 17(2, 3): 46–191. Google Scholar
  • 80. Thomas, D. W., S. D. West, and O. Portland. 1989. Sampling methods for bats. US Department of Agriculture Forest Service, General technical report PNW–GRR–243, Pacific Northwest Research Station, Portland, Oregon, USA. Available at http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/4695/PB90158429.pdf?sequence=1. Accessed 16 March 2017. Google Scholar
  • 81. Treitler, J. T., O. Heim, M. Tschapka, and K. Jung. 2016. The effect of local land use and loss of forests on bats and nocturnal insects. Ecology and Evolution, 6: 4289–4297. Google Scholar
  • 82. Truxa, C., and K. Fiedler. 2012. Attraction to light — from how far do moths (Lepidoptera) return to weak artificial sources of light? European Journal of Entomology, 109: 77. Google Scholar
  • 83. Tscharntke, T., A. M. Klein, A. Kruess, I. Steffan Dewenter, and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity — ecosystem service management. Ecology Letters, 8: 857–874. Google Scholar
  • 84. Wickramasinghe, L. P., S. Harris, G. Jones, and N. Vaughan. 2003. Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. Journal of Applied Ecology, 40: 984–993. Google Scholar
  • 85. Zeller, U., N. Starik, and T. Göttert. 2017. Biodiversity, land use and ecosystem services — an organismic and comparative approach to different geographical regions. Global Ecology and Conservation, 10: 114–125. Google Scholar
  • 86. Ziolkowska, J. R., and J. M. Peterson (eds.). 2016. Competition for water resources: experiences and management approaches in the US and Europe. Elsevier, Cambridge, 478 pp. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-c3b6227e-0801-40c8-9f48-44a890b291b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.