PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Energy use and carbon emissions efficiency study of chinese regions based on price factor

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As China has committed to the international community to effectively control CO₂ emissions, it is necessary for the regions of China to launch an in-depth analysis about energy use and CO₂ emission efficiency. In this paper, each province of China will be regarded as an independent decision-making unit. After judging their return to scale state by the traditional DEA theoretical model, we use the SBM and RE/CE models, which respectively solve the problems of slack variables, and the traditional model does not reflect factors such as price, which is truly existing. Then we get a more comprehensive efficiency that reveals Chinese energy use and the CO₂ emissions situation. From the empirical study of 30 regions in China, we know that the southern region of China has the most efficient score while northeastern China has poor performance. Price factor has a significant influence on energy use and CO₂ emissions efficient score of some provinces. Our study shows that northern and northeastern China should make more of an effort on energy consumption reduction in order to improve the efficiency score. Instead, northeastern and central China should pay more attention improving energy conversion technology in order to increase their efficiency.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2059-2069,fig.,ref.

Twórcy

autor
  • Department of Economics and Management, North China Electric Power University, Baoding, P.R. China
autor
  • Department of Economics and Management, North China Electric Power University, Baoding, P.R. China

Bibliografia

  • 1. SUEYOSHI T., GOTO M. DEA radial measurement for environmental assessment: a comparative study between Japanese chemical and pharmaceutical firms. Applied Energy, 115 (4), 502, 2014.
  • 2. IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
  • 3. ZHANG C.Q., ZHANG M., ZHANG N. CO₂ Emissions from the Power Industry in the China’s Iteijing-Tianjin-Hebei Region: Decomposition and Policy Analysis. Polish journal of environmental studies, 26 (2), 903, 2017.
  • 4. WANG K., WEI Y.M., ZHANG X. Energy and emissions efficiency patterns of Chinese regions: a multi-directional efficiency analysis. Applied Energy, 104 (2), 105, 2013.
  • 5. ZENG S., XU Y., WANG L., CHEN J., LI Q. Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020. Energies, 9 (5), 329, 2016.
  • 6. HRAFNKELSSON B., ODDSSON G.V., UNNTHORSSON R. A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation. Energies, 9 (4), 286, 2016.
  • 7. LI W., ZHANG H.X. Decomposition Analysis of Energy Efficiency in China’s Beijing-Tianjin-Hebei Region. Polish Journal of Environmental Studies, 26 (1), 189, 2017.
  • 8. SUN J., WU J., LIANG L., ZHONG R.Y., HUANG G.Q. Allocation of emission permits using DEA: centralised and individual points of view. Int J Prod Res, 52 (2), 419, 2014.
  • 9. WANG K., ZHANG X., WEI Y.M., YU S. Regional allocation of CO₂ emissions allowance over provinces in China by 2020. Energy Policy, 54 (3), 214, 2013.
  • 10. CHARNES A., COOPER W.W., RHODES E. Measuring the efficiency of decision making units. European Journal of Operational Research, 2 (6), 429, 1987.
  • 11. KORHONEN P., SYRJÄNEN M. Resource allocation based on efficiency analysis. Manage Sci, 50 (8), 1134, 2004.
  • 12. ZHOU Y., XING X., FANG K., LIANG D., XU C. Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy, 57 (7), 68, 2013.
  • 13. FLORENS F., DIRK R., STEFAN V. An analysis of the economic determinants of energy efficiency in the European iron and steel industry. Journal of Cleaner Production, 104, 250, 2015.
  • 14. YUAN P., CHENG S. Determinants of Carbon Emissions Growth in China: A Structural Decomposition Analysis. Energy Procedia, 5 (1), 169, 2011.
  • 15. SHENG P., YANG J., SHACKMAN J.D. Energy’s Shadow Price and Energy Efficiency in China: A Non-Parametric Input Distance Function Analysis. Energies, 8 (3), 1975, 2015.
  • 16. MING C., XIAOPING W. Chinese Industrial Energy Efficiency Evaluation Considering Carbon Emissions. International Conference on Computer Distributed Control & Intelligent Environmental Monitoring: Changsha, China, 2011.
  • 17. WANG S., CHU C., CHEN G., PENG Z., F LI. Efficiency and reduction cost of carbon emissions in China: A non-radial Directional Distance Function method. Journal of Cleaner Production, 113, 624, 2016.
  • 18. YANG J., ZHANG T., SHEN P., SHACKMAN J.D. Carbon dioxide emissions and interregional economic convergence in China. Economic Modelling, 52, 672, 2016.
  • 19. CHEN Z., YOU J., MA J. Inter-Provincial Difference and Causes Analysis of Total Factor CO₂ Emissions Performance in China. Asia-pacific Power & Energy Engineering Conference: Wuhan, China, 2011.
  • 20. ROIF F., SHAWNA G. Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 157 (1), 242, 2004.
  • 21. SUN W., S/HE Y.J., GAO H.S. An Electric Carbon Productivity Analysis of China’s Industrial Sector Using Multi-Dimensional Decomposition. Polish journal of environmental studies, 25 (4), 1699, 2016.
  • 22. FANG Z., HONG F., WU J.J., DAMIAN W. Environmental Efficiency Analysis of Listed Cement Enterprises in China. Sustainability, 8 (5), 453, 2016.
  • 23. OGGIONI G., RICCARDI R., TONINELLI R. Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39 (5), 2842, 2011.
  • 24. COOK W.D., GREEN R.H. Evaluating power plant efficiency: A hierarchical model. COMPUTERS & OPERATIONS RESEARCH, 32 (4), 813, 2005.
  • 25. BENYAMIN K., SHAHIN R., MAHMOUD O., HOSSEIN M. Cover image applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy, 58 (1), 588, 2013.
  • 26. MOUSAVI-AVVAL S.H., RAFIEE S., JAFARI A., MOHAMMADI A. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36 (5), 2765, 2011.
  • 27. CHAUHAN N.S., MOHAPATRA P.K.J., PANDEY K.P. Improving energy productivity in paddy production through benchmarking dan application of data envelopment analysis. Energy Conversion and Management, 47 (9-10), 1063, 2006.
  • 28. Flávia d.C.C., Daisy R., Roberta T.R. Energy efficiency analysis of BRICS countries: a study using Data Envelopment Analysis. Gest Prod, 23 (1), 192, 2016.
  • 29. WANG Z.H., FENG C. The impact and economic cost of environmental regulation on energy utilization in China. Applied Economics, 46 (27), 3362, 2014.
  • 30. BLANCARD S., MARTIN E. Energy efficiency measurement in agriculture with imprecise energy content information. Energy Policy, 66 (66), 198, 2014.
  • 31. JUO J.C., FU T.T., YU M.M., LIN Y.H. Profit-oriented productivity change. Omega, 57, 176, 2015.
  • 32. GOLANY B., ROLL Y. An application procedure for DEA. Omega, 17 (3), 237, 2009.
  • 33. MENG M., NIU D.X. Modeling CO₂ emissions from fossil fuel combustion using the logistic equation. Energy, 36 (5), 3355, 2011.
  • 34. WANG K., ZHANG X., WEI Y.M., YU S. Regional allocation of CO₂ emissions allowance over provinces in China by 2020. Energy Policy, 54 (3), 214, 2013.
  • 35. WU J., ZHU Q., CHU J., LIU H., LIANG L. Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transportation Research Part D: Transport and Environment, 48, 460, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c35df31c-76bf-4730-bb6c-85d6bff64316
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.