PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 16 |

Tytuł artykułu

Testing Metabolic Theory of Ecology on the local scale: a preliminary study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Data on the density and the body mass of a single community of soil fauna were collected and metabolic rates were calculated from the literature data to test some predictions of the metabolic theory of ecology on the local scale. Part of the results are in accordance with the theory: power functions were found between the metabolic rate and the body mass, and between the density and the body mass. These two relationships have opposite exponents inducing that total population energy use is independent of the body mass. However, the exponents of the relationships were significantly different from the predicted values of |3/4|. The metabolic rate - body mass relationships yielded an exponent >0.8, while the density - body mass relationships yielded an exponent <-0.85. Our results indicate that the metabolic theory of ecology does not hold at the local level. Few studies have been carried out on the local scale and further analysis is required to validate this controversial but promising theory.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Opis fizyczny

p.69-76,fig.,ref.

Twórcy

autor
  • Centre for Ecological Research, Polish Academy of Sciences, Konopnicka 1, 05-092 Lomianki, Poland
autor
  • Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Centre for Ecological Research, Polish Academy of Sciences, Konopnicka 1, 05-092 Lomianki, Poland
  • Centre for Ecological Research, Polish Academy of Sciences, Konopnicka 1, 05-092 Lomianki, Poland
  • Faculty of Sciences, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
autor
  • Faculty of Sciences, University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
autor
  • Centre for Ecological Research, Polish Academy of Sciences, Konopnicka 1, 05-092 Lomianki, Poland
  • Institute for Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky pr., 117071 Moscow, Russia

Bibliografia

  • Allen A. P., Gillooly, J. F. & Brown, J. H., 2007, Recasting the species-energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity, [in:] D. Storch, P. A. Marquet, J. H. Brown (eds.), Scaling Biodiversity, Cambridge University Press, Cambridge: 283-299.
  • Blackburn T. M., Brown V. K., Doube B. M., Greenwwod J. J. D., Lawton J. H. & Stork N. E., 1993, The relationship between abundance and body size in natural animal assemblages, Journal of Animal Ecology 62: 519-528.[http://dx.doi.org/10.2307/5201]
  • Blackburn T. M. & Gaston K. J., 1997, A critical assessment of the form of the interspecific relationship between abundance and body size in animals, Journal of Animal Ecology 66: 233-249.[http://dx.doi.org/10.2307/6025]
  • Brown J. H., Gillooly J. H., Allen A. P., Savage V. M. & West G. B., 2004, Towards a metabolic theory of ecology, Ecology 85: 1771-1789.[http://dx.doi.org/10.1890/03-9000]
  • Byzova Y. B., 2007, Respiration of soil invertebrates, MK Publishing House, Moscow: 328. (In Russian).
  • Chown S. L., Marais E., Terblanche J. S., Klok C. J., Lighton J. R. B. & Blackburn T. M., 2007, Scaling of insect metabolic rate is inconsistent with the nutrient supply network model, Functional Ecology 21: 282-290.[http://dx.doi.org/10.1111/j.1365-2435.2007.01245.x]
  • Damuth J., 1987, Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use, Biological Journal of the Linnean Society 31: 193-246.[http://dx.doi.org/10.1111/j.1095-8312.1987.tb01990.x]
  • Del Rio C. M., 2008, Metabolic theory or metabolic models?, Trends in Ecology and Evolution 23: 256-260.
  • Dodds P. S., Rothman D. H. & Weitz J. S., 2001, Re-examination of the ‘‘3⁄4-law’’ of metabolism, J. Theor. Biol. 209: 9-27.[http://dx.doi.org/10.1006/jtbi.2000.2238]
  • Downs C. J., Hayes J. P. & Tracy C. R., 2007, Scaling metabolic rate with body mass and inverse body temperature: a test of the Arrhenius fractal supply model, Functional Ecology 22: 239-244.
  • Duncan R. P., Forsyth D. M. & Hone J., 2007, Testing the metabolic theory of ecology: Allometric scaling exponents in mammals, Ecology 88: 324-333.[http://www.ncbi.nlm.nih.gov/pubmed/17479751] [http://dx.doi.org/10.1890/0012-9658(2007)88%5B324:TTMTOE%5D2.0.CO;2]
  • Enquist B. J., West G. B. & Brown J. H., 2009, Extensions and evaluation of a general quantitative theory of forest structure and dynamics, Proc. Nat. Acad. of Sci. USA 106: 7046-7051.[http://dx.doi.org/10.1073/pnas.0812303106]
  • Gillooly J. F., Brown J. H., West G. B., Savage Van M. & Charnov E. L., 2001, Effects of size and temperature on metabolic rate, Science 293: 2248-2251.[http://www.ncbi.nlm.nih.gov/pubmed/11567137] [http://dx.doi.org/10.1126/science.1061967]
  • Gillooly J. F., Allen A. P., West G. B. & Brown J. H., 2005, The rate of DNA evolution: effects of body size and temperature on the molecular clock, Proc. Natl. Acad. Sci. USA 102: 140-145.[http://dx.doi.org/10.1073/pnas.0407735101]
  • Griffiths D., 1992, Size, abundance, and energy use in communities, Journal of Animal Ecology 61: 307-315.[http://dx.doi.org/10.2307/5323]
  • Hammer Ř., Harper D. A. T. & Ryan P. D., 2001, PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica 4(1), http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  • Hawkins B. A., Albuquerque F. S., Araujo M. B., Beck J., Bini L. M., Cabrero-Sañudo F. J., Castro-Parga I., Diniz- Filho J. A., Ferrer-Castan D., Field R., Gómez J. F., Hortal J., Kerr J. T., Kitching I. J., León-Cortés J. L., Lobo J. M., Montoya D., Moreno J. C., Olalla-Tárraga M. A., Pausas J. G., Qian H., Rahbek C., Rodríguez M. A., Sanders N. J. & Williams P., 2007, A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients, Ecology 88: 1877-1888.[http://www.ncbi.nlm.nih.gov/pubmed/17824415] [http://dx.doi.org/10.1890/06-1444.1]
  • Isaac N. J. B. & Carbone C., 2010, Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses, Ecological Letters 1: 728-735.[http://dx.doi.org/10.1111/j.1461-0248.2010.01461.x]
  • Kleiber M., 1932, Body size and metabolism, Hilgardia 6: 315-332.
  • Klekowski R. Z., Wasilewska L. & Paplińska E., 1972, Oxygen consumption by soil-inhabiting nematodes, Nematologica 18: 391-403.[http://dx.doi.org/10.1163/187529272X00665]
  • Kozłowski J. & Konarzewski M., 2004, Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant?, Functional Ecology 18: 283-289.[http://dx.doi.org/10.1111/j.0269-8463.2004.00830.x]
  • Kozłowski J. & Konarzewski M., 2005, West, Brown and Enquist’s model of allometric scaling again: the same question remain?, Functional Ecology 19: 739-743.[http://dx.doi.org/10.1111/j.1365-2435.2005.01021.x]
  • Macfadyen A., 1961, Improved funnel-type extractors for soil arthropods, Journal of Animal Ecology 30: 171-184.[http://dx.doi.org/10.2307/2120]
  • Makarieva A. M., Gorshkov V. G., Li B. L., Chown S. L. & Reich P. B., 2008, Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum, Proc. Natl. Acad. Sci. USA 105: 16994-16999.[http://dx.doi.org/10.1073/pnas.0802148105]
  • Mason C. F., 1971, Respiration rates and population metabolism of woodland snails, Oecologia 7: 80-94.[http://dx.doi.org/10.1007/BF00346295]
  • Meehan T. D., 2006, Energy use and animal abundance in litter and soil communities, Ecology 87: 1650-1658.[http://www.ncbi.nlm.nih.gov/pubmed/16922316] [http://dx.doi.org/10.1890/0012-9658(2006)87%5B1650:EUAAAI%5D2.0.CO;2]
  • Muller-Landau H. C., Condit R. S., Chave J., Thomas S. C., Bohlman S. A., Bunyavejchewin S., Davies S., Foster R., Gunatilleke S., Gunatilleke N., Harms K. E., Hart T., Hubbell S. P., Itoh A., Kassim A. R., LaFrankie J. V., Lee H. S., Losos E., Makana J. R., Ohkubo T., Sukumar R., Sun I. F., Nur Supardi M. N., Tan S., Thompson J., Valencia R., Muñoz G. V., Wills C., Yamakura T., Chuyong G., Dattaraja H. S., Esufali S., Hall P., Hernandez C., Kenfack D., Kiratiprayoon S., Suresh H. S., Thomas D., Vallejo M. I. & Ashton P., 2006, Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests, Ecology Letters 9: 575-588.[http://dx.doi.org/10.1111/j.1461-0248.2006.00904.x]
  • O’Connor F. B., 1955, Extraction of enchytraeid worms from a coniferous forest soil, Nature 175: 815-816.[http://dx.doi.org/10.1038/175815b0]
  • Persson T. & Lohm U., 1977, Energetical significance of the annelids and arthropods in a Swedish grassland soil, Ecological Bulletins 23: 1-211.
  • Petersen H., 1981, The respiratory metabolism of Collembola species from a Danish beech wood, Oikos 37: 273-286.[http://dx.doi.org/10.2307/3544118]
  • Price C. A., Weitz J. S., Savage V. M., Stegen J., Clarke A., Coomes D. A., Dodds P. S., Etienne R. S., Kerkhoff A. J., McCulloh K., Niklas K. J., Olff H. & Swenson N. G., 2012, Testing the metabolic theory of ecology, Ecology Letters 15: 1465-1474.[http://dx.doi.org/10.1111/j.1461-0248.2012.01860.x] [http://www.ncbi.nlm.nih.gov/pubmed/22931542]
  • Sanders N. J., Lessard J.-P., Fitzpatrick M. C. & Dunn R. R., 2007, Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains, Global Ecology & Biogeography 16: 640-649.
  • Savage V. M., Gillooly J. F., Brown J. H., West G. B. & Charnov E. L., 2004, Effects of Body Size and Temperature on Population Growth, Am. Nat. 163: 429-441.[http://www.ncbi.nlm.nih.gov/pubmed/15026978 [http://dx.doi.org/10.1086/381872]
  • Tilman D., Lambert J. H. R., Harploe S., Dybzinski R., Fargione J., Clarke C. & Lehman C., 2004, Does metabolic theory apply to community ecology? It’s a matter of scale, Ecology 85: 1797-1799.[http://dx.doi.org/10.1890/03-0725]
  • Ulrich W., 2006, Metabolic theory at the local scale: the case of the Hymenoptera, Ecological Questions 7: 9-14.
  • van der Meer J., 2006, Metabolic theories in ecology, Trends in Ecology and Evolution 21: 136-140.[http://www.ncbi.nlm.nih.gov/pubmed/16701489]
  • Wang X., Hao Z., Zhang J., Lian J., Li B. & Yao X., 2009, Tree size distributions in an old-growth temperate forest, Oikos 118: 25-36.[http://dx.doi.org/10.1111/j.0030-1299.2008.16598.x]
  • West G. B., Brown J. H. & Enquist, B. J., 1997, A general model for the origin of allometric scaling laws in biology, Science 276: 122-126.[http://www.ncbi.nlm.nih.gov/pubmed/9082983] [http://dx.doi.org/10.1126/science.276.5309.122]
  • West G. B., Brown J. H. & Enquist B. J., 1999, A general model for the structure and allometry of plant vascular systems, Nature 400: 664-667.
  • White C. R. & Seymour R. S., 2003, Mammalian basal metabolic rate is proportional to body mass (2⁄3), Proc. Natl. Acad. USA 100: 4046-4049.[http://dx.doi.org/10.1073/pnas.0436428100]
  • Whitehead A. G. & Hemming J. R., 1965, A comparison of some quantitative methods of extracting small vermiform nematodes from soil, Annals of Applied Biology 55: 25-38. [http://dx.doi.org/10.1111/j.1744-7348.1965.tb07864.x]

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c3520644-4e93-4d66-8d09-522e489113a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.