PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 4 |

Tytuł artykułu

Membrane potential-dependent binding of polysialic acid to lipid monolayers and bilayers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Polysialic acids are linear polysaccharides composed of sialic acid monomers. These polyanionic chains are usually membrane-bound, and are expressed on the surfaces of neural, tumor and neuroinvasive bacterial cells. We used toluidine blue spectroscopy, the Langmuir monolayer technique and fluorescence spectroscopy to study the effects of membrane surface potential and transmembrane potential on the binding of polysialic acids to lipid bilayers and monolayers. Polysialic acid free in solution was added to the bathing solution to assess the metachromatic shift in the absorption spectra of toluidine blue, the temperature dependence of the fluorescence anisotropy of DPH in liposomes, the limiting molecular area in lipid monolayers, and the fluorescence spectroscopy of oxonol V in liposomes. Our results show that both a positive surface potential and a positive transmembrane potential inside the vesicles can facilitate the binding of polysialic acid chains to model lipid membranes. These observations suggest that these membrane potentials can also affect the polysialic acid-mediated interaction between cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

4

Opis fizyczny

p.579-594,fig.,ref.

Twórcy

autor
  • Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
autor
  • Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
autor
  • Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
autor
  • Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
autor
  • Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032, Opole, Poland

Bibliografia

  • 1. Przybyło, M., Borowik, T. and Langner, M. Fluorescence techniques for determination of the membrane potentials in high throughput screening. J. Fluoresc. 20 (2010) 1139-1157.
  • 2. Rothbard, J.B., Jessop, T.C. and Wender P.A. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv. Rev. 57 (2005) 495-504.
  • 3. Troy, F.A., Janas, T., Janas, T. and Merker, R.I. Vectorial translocation of polysialic acid chains across the inner membrane of Escherichia coli K1. FASEB J. 5 (1991) A1548-A1548.
  • 4. Janas, T., Krajiński, H., Timoszyk, A. and Janas, T. Translocation of polysialic acid across model membranes: kinetic analysis and dynamic studies. Acta Biochim. Polon. 48 (2001) 163-173.
  • 5. Sundelacruz, S., Levin, M, and Kaplan, D.L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 5 (2009) 231-246.
  • 6. Kadenbach, B., Ramzan, R., Moosdorf, R. and Vogt, S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 11 (2009) 700-706.
  • 7. Brown, G.P. and Douglas, J.G. Influence of transmembrane potential differences of renal tubular epithelial cell on ANG II binding. Am. J. Physiol. 252 (1987) F209-F214.
  • 8. Mahaut-Smith, M.P., Martinez-Pinna, J. and Gurung, I.S. A role for membrane potential in regulating GPCRs? Trends Pharmacol. Sci. 29 (2008) 421-429.
  • 9. Janas, T., Kuczera, J. and Chojnacki, T. Voltage-dependent behaviour of dolichyl phosphate-phosphatidylcholine bilayer lipid membranes. Chem. Phys. Lipids 52 (1990) 151-155.
  • 10. Ferrier, G.R. and Howlett, S.E. Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction. Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H1928-H1944.
  • 11. Xu, C. and Loew, L.M. The effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes. Biophys. J. 84 (2003) 2768-2780.
  • 12. Wojtczak, L., Famulski, K.S., Nalecz, M.J. and Zborowski, J. Influence of the surface potential on the Michaelis constant of membrane-bound enzymes: effect of membrane solubilization. FEBS Lett. 139 (1982) 221-224.
  • 13. Yeung, T., Gilbert, G.E., Shi, J., Silvius, J., Kapus, A. and Grinstein, S. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319 (2008) 210-213.
  • 14. Wang, L., Bose, P.S. and Sigworth, F.J. Using cryo-EM to measure the dipole potential of a lipid membrane. Proc. Natl. Ac. Sci. USA 103 (2006) 18528-18533.
  • 15. Troy, F.A. Polysialic acid in molecular medicine. Encyclopedia Biol. Chem. 3 (2004) 407-414.
  • 16. Bonfanti, L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog. Neurobiol. 80 (2006) 129-164.
  • 17. Gascon, E., Vutskits, L. and Kiss, J.K. Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res. Rev. 56 (2007) 101-118.
  • 18. Hildebrandt, H., Muhlenhoff, M., Weinhold, B. and Gerardy-Schahn, R. Dissecting polysialic acid and NCAM functions in brain development. J. Neurochem. 103 (Suppl 1) (2007) 56-64.
  • 19. Miyata, S., Sato, C. and Kitajima, K. Glycobiology of polysialic acids on sea urchin gametes. Trends Glycosci. Glycotechnol. 19 (2007) 85-98.
  • 20. Rutishauser, U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nature Rev. Neurosci. 9 (2008) 26-35.
  • 21. Janas, T. and Janas, T. Membrane oligo- and polysialic acids. Biochim. Biophys. Acta - Biomembranes 1808 (2011a) 2923-2932.
  • 22. Janas, T., Janas, T. and Krajiński, H. Membrane transport of polysialic acid chains: modulation of transmembrane potential. Eur. Biophys. J. 29 (2000a) 507-514.
  • 23. Janas, T., Nowotarski, K. and Janas, T. Polysialic acid can mediate membrane interactions by interacting with phospholipids. Chem. Phys. Lipids 163 (2010) 286-291.
  • 24. Hannun, Y.A. and Obeid, L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9 (2008) 139-150.
  • 25. Hengst, J.A., Guilford, J.M., Fox, T.E., Wang, X., Conroy, E.J. and Yun, J.K. Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition. Arch. Biochem. Biophys. 492 (2009) 62-73.
  • 26. Janas, T., Nowotarski, K. and Janas, T. The effect of long-chain bases on polysialic acid-mediated membrane interactions. Biochim. Biophys. Acta - Biomembranes 1808 (2011b) 2322-2326.
  • 27. Kanato, Y., Kitajima, K. and Sato, C. Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 18 (2008) 1044-1053.
  • 28. Janas T., Janas, T. and Yarus, M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34 (2006) 2128-2136.
  • 29. Janas, T., Janas, T. and Yarus, M. A membrane transporter for tryptophan composed of RNA. RNA 10 (2004) 1541-1549.
  • 30. Ohkuma, S., Aoki, E. and Kanehira, M. Interaction of Toluidine Blue and sialoglycopeptides. Proc. Japan Acad. 47 (1971) 587-591.
  • 31. Negelmann, L., Pisch, S., Bornscheuer, U. and Schmidt, R. Properties of unusual phospholipids. III: Synthesis, monolayer investigations and DSC studies of hydroxyl octadeca(e)noic acids and diacylglycerophosphocholines derived therefrom. Chem. Phys. Lipids 90 (1997) 117-134.
  • 32. Janas, T., Nowotarski, K., Gruszecki, W.I. and Janas, T. The effect of hexadecaprenol on molecular organisation and transport properties of model membranes. Acta Biochim. Polon. 47 (2000c) 661-673.
  • 33. Van Damme, M.P.I., Tiglias, J., Nemet, N. and Preston, B.N. Determination of the charge content at the surface of cells using a colloid titration technique. Anal. Biochem. 223 (1994) 62-70.
  • 34. Yun, S., Ahn, K. and Kim, M.W. Polyelectrolyte flexibility effect on the morphology of charged lipid multilayers. Europhys. Lett. 70 (2005) 555-561.
  • 35. Smith, J.C., Russ, P., Cooperman, S. and Chance, B. Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes. Biochemistry 15 (1976) 50794- 5105.
  • 36. Bashford, C.L., Chance, B., Smith, J.C. and Yoshida, T. The behavior of Oxonol dyes in phospholipid dispersions. Biophys. J. 25 (1979) 63-85.
  • 37. Clarke, R.J. and Apell, H.J. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles. Biophys. Chem. 34 (1989) 225-237.
  • 38. Holoubek, A., Vecer, J. and Sigler, K. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes. J. Fluoresc. 17 (2007) 201-213.
  • 39. Janas, T. and Janas, T. Polysialic acid: structure and properties. in: Polysaccharides: Structural Diversity and Functional Versality (Dumitriu, S. Ed.), 2nd edition, Marcel Dekker, New York, NY, 2005a, 707-727.
  • 40. Janas, T., Krajiński, H. and Janas, T. Electromigration of polyion homopolymers across biomembranes: a biophysical model. Biophys. Chem. 87 (2000b) 167-178.
  • 41. Koiv, A., Mustonen, P. and Kinnunen, P.K.J. Differential scanning calorimetry study on the binding of nucleic-acids to dimyristoylphosphatidylcholine-sphingosine liposomes. Chem. Phys. Lipids 70 (1994) 1-10.
  • 42. Fang, Y. and Yang, J. Two-dimensional condensation of DNA molecules on cationic lipid membranes. J. Phys. Chem. B 101 (1997) 441-449.
  • 43. Jurkiewicz, P., Okruszek, A., Hof, M. and Langner M. Associating oligonucleotides with positively charged liposomes. Cell. Mol. Biol. Lett. 8 (2003) 77-84.
  • 44. Koltover, I., Salditt, T. and Safinya, C.R. Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys. J. 77 (1999) 915-924.
  • 45. Bordi, F., Cametti, C. and Sennato, S. Does a cluster phase in polyionliposome colloidal suspensions exist? An integrated experimental overview. Colloids Surf. A 306 (2007) 102-110.
  • 46. Michanek, A., Kristen, N., Höök, F., Nylander, T. and Sparr, E. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study. Biochim. Biophys. Acta 1798 (2010) 829-838.
  • 47. Even-Chen, S., Cohen, R. and Barenholz, Y. Factors affecting DNA binding and stability of association to cationic liposomes. Chem. Phys. Lipids 165 (2012) 414-423.
  • 48. Diederich, A., Bahr, G. and Winterhalter, M. Influence of polylysine on the rupture of negatively charged membranes. Langmuir 14 (1998) 4597-4605.
  • 49. de Kroon, A.I.P.M., de Gier, J. and de Kruijff, B. Association of synthetic model peptides with phospholipid vesicles induced by a membrane potential. Biochim. Biophys. Acta 981 (1989) 371-373.
  • 50. Janas, T., Kotowski, J. and Tien, H.T. Polymer-modified bilayer lipid membranes: the polypyrrole-lecithin system. Bioelectrochem. Bioenerg. 19 (1988) 405-412.
  • 51. Jennings, M.L., Schulz, R.K. and Allen, M. Effects of membrane potential on electrically silent transport. J. Gen. Physiol. 96 (1990) 991-1012.
  • 52. Janas, T. and Janas, T. Involvement of carboxyl groups in chloride transport and reversible DIDS binding to Band 3 protein in human erythrocytes. Cell. Mol. Biol. Lett. 16 (2011) 342-358.
  • 53. Berkovich, A.K., Lukashev, E.P. and Melik-Nubarov, N.S. Dipole potential as a driving force for the membrane insertion of polyacrylic acid in slightly acidic milieu. Biochim. Biophys. Acta 1818 (2012) 375-383.
  • 54. Janas, T. and Yarus, M. Visualization of membrane RNAs. RNA 9 (2003) 1353-1361.
  • 55. Janas, T., Janas, T. and Yarus, M. RNA, lipids and membranes. in: The RNA World III (Gesteland, R., Cech, T.R., Atkins, J., Eds), Cold Spring Harbor Laboratory Press, New York, NY, 2005b, 207-225.
  • 56. Janas, T. and Janas, T. The selection of aptamers specific for membrane molecular targets. Cell. Mol. Biol. Lett. 16 (2011) 25-39.
  • 57. Gabrielska, J., Gagos, M., Gubernator, J. and Gruszecki, W.I. Binding of antibiotic amphotericin B to lipid membranes: A 1 H NMR study. FEBS Lett. 580 (2006) 2677-2685.
  • 58. Müller, E., Giehl, A., Schwarzmann, G., Sandhoff, K. and Blume, A. Oriented I ,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding. Biophys. J. 71 (1996) 1400-1421.
  • 59. Khalil, M.B., Kates, M. and Carrier, D. FTIR study of the monosialoganglioside GM1 in perdeuterated dimyristoylglycerophosphocholine (DMPCd54) multilamellar bilayers: spectroscopic evidence of a significant interaction between Ca2+ ions and the sialic acid moiety of GM1. Biochemistry 39 (2000) 2980-2988.
  • 60. Theis, T., Mishra, B., von der Ohe, M., Loers, G., Prondzynski, M., Pless, O., Blackshear, P.J., Schachner, M. and Kleene, R. Functional role of the interaction between polysialic acid and myristoylated alanine-rich C kinase substrate at the plasma membrane. J. Biol. Chem. 288 (2013) 6726-6742.
  • 61. Azurmendi, H.F., Vionnet, J., Wrightson, L., Trinh, L.B., Shiloach, J. and Freedberg, D.I. Extracellular structure of polysialic acid explored by on cell solution NMR. Proc. Natl. Ac. Sci. USA 104 (2007) 11557-11561.
  • 62. Brisson, J.R., Baumann, H., Imberty, A., Perez, S. and Jennings, H.J. Helical epitope of the group B meningococcal (2-8)-linked sialic acid polysaccharide. Biochemistry 31 (1992) 4996-5004.

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c3177701-c2e8-49fa-bcff-bd54f2c05a60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.