Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 3 |

Tytuł artykułu

Proteomic studies in pregnant and lactating cows. A review

Warianty tytułu

Języki publikacji



Proteomics, an innovative branch of science, deals with comprehensive analysis of protein expression at a particular time in a given biological system. Proteomics enables analysis of the repertoire of proteins, comparison of protein profiles, and reveals changes in expression. Proteomic studies may be useful in solving scientific problems and may have applications in practice. The use of proteomic techniques is increasing in relation to farm animals in order to assess their health status, growth rate and productivity, but it is worth emphasizing that still is inadequate to needs. The detection of biomarkers enables early diagnosis, prevention, and finding therapeutic solutions. During puberty in heifers and during the first pregnancy and lactation, dynamic and gradual adaptive changes in the intensity of metabolic processes and changes in the activity of regulatory mechanisms are observed. These changes are associated with the growth and development of the foetus, preparation of the mammary glands for lactation, and, after parturition, with reproductive system regeneration and preparation for new fertilization and pregnancy. Comparison of protein profiles and identification of differentially expressed proteins involved in particular metabolic pathways may be useful in comprehensive analysis of functional changes in pregnant and lactating cows. Current knowledge, results of scientific studies, and their application into practice indicate that proteomics will introduce new standards into physiological research in the near future. This paper presents studies on pregnant and lactating cows, with emphasis on proteomics of blood serum/ plasma, foetal membranes, liver, amniotic fluid, allantoic fluid, uterine fluid, urine, mammary gland, milk, and comparative proteomics of healthy and sick cows

Słowa kluczowe








Opis fizyczny



  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Dr. Judym 26, 71-466 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Dr. Judym 26, 71-466 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Dr. Judym 26, 71-466 Szczecin, Poland


  • Ardekani A.M., Maghsudi N., Meyfour A., Ghasemi R., Lakpour N., Nooshinfar E., Ghaempanah Z., 2011. Stress-induced proteomic changes in the hippocampus of pregnant wistar rats. Avicenna J. Med. Biotechnol. 3, 157–166
  • Beddek A.J., Rawson P., Peng L., Snell R., Lehnert K., Ward H.E., Jordan T.W., 2008. Profiling the metabolic proteome of bovine mammary tissue. Proteomics 8, 1502–1515
  • Blumenstein M., Mcmaster M.T., Black M.A., Wu S., Prakash R., Cooney J., Mccowan L.M.E., Cooper G.J.S., North R.A., 2009. A proteomic approach identifies early pregnancy biomarkers for preeclampsia: Novel linkages between a predisposition to preeclampsia and cardiovascular disease. Proteomics 9, 1–17
  • Boumahrou N., Andrei S., Miranda G., Henry C., Panthier J.J., Martin P., Bellier S., 2009. The major protein fraction of mouse milk revisited using proven proteomic tools. J. Physiol. Pharmacol. 60, 113–118
  • Cairoli F., Battocchio M., Veronesi M.C., Brambilla D., Conserva F., Eberini I., Wait R., Gianazza E., 2006. Serum protein pattern during cow pregnancy: Acute-phase proteins increase in the peripartum period. Electrophoresis 27, 1617–1625
  • Chae J.I., Kim J., Lee S.G. et al., 2011. Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy. Proteome Sci. doi: 10.1186/1477-5956-9-41
  • Chiaradia E., Avellini L., Tartaglia M., Gaiti A., Just I., Scoppetta F., Czentnar Z., Pich A., 2012. Proteomic evaluation of sheep serum proteins. BMC Vet. Res. 8, 8–66, doi:10.1186/1746- 6148-8-66
  • Choe C., Park J.W., Kim E.S., Lee S.G., Park S.Y., Lee J.S., Cho M.J., Kang K.R., Han J., Kang D., 2010. Proteomic analysis of differentially expressed proteins in bovine endometrium with endometritis. Korean J. Physiol. Pharmacol. 14, 205–212
  • D’Alessandro A., Scaloni A., Zolla L., 2010. Human milk proteins: an interactomics and updateffunctional overview. J. Proteome Res. 9, 3339–3373
  • D’Auria E., Agostoni C., Giovannini M., Riva E., Zetterström R., Fortin R., Greppi G.F., Bonizzi L., Roncada P., 2005. Proteomic evaluation of milk from different mammalian species as a substitute for breast milk. Acta Paediat. 94, 1708–1713
  • Daniels K.M., Webb K.E., McGilliard M.L., Meyer M.J., Van Amburgh M.E., Akers R.M., 2006. Effects of body weight and nutrition on mammary protein expression profiles in Holstein heifers. J Dairy Sci. 89, 4276–4288
  • Danielsen M., Codrea M.C., Ingvartsen K.L., Friggens N.C., Bendixen E., Røntved C.M., 2010. Quantitative milk proteomics – Host responses to lipopolysaccharide-mediated inflammation of bovine mammary gland. Proteomics 10, 2240–2249
  • Davies C.R., Morris J.S., Griffiths M.R., Page M.J., Pitt A., Stein T., Gusterson B.A., 2006. Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development. Proteomics 6, 5694–5704
  • Fortunato D., Giuffrida M.G., Cavaletto M. et al., 2003. Structural proteome of human colostral fat globule membrane proteins. Proteomics 3, 897–905
  • Gerton G.L., Fan X.J., Chittams J., Sammel M., Hummel A., Strauss J.F., Barnhart K., 2004. A serum proteomics approach to the diagnosis of ectopic pregnancy. Ann. NY Acad. Sci. 1022, 306–316
  • Gharesi-Fard B., Zolghadri J., Kamali-Sarvestani E., 2010. Proteome differences of placenta between pre-eclampsia and normal pregnancy. Placenta 31, 121–125
  • González-Fernández R., Martínez-Galisteo E., Gaytán F., Bárcena J.A., Sánchez-Criado J.E., 2008. Changes in the proteome of functional and regressing corpus luteum during pregnancy and lactation in the rat. Biol. Reprod. 79, 100–114
  • Gravett M.G., Novy M.J., Rosenfeld R.G. et al., 2004. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA - J. Am. Med. Assn. 292, 462–469
  • Gupta M.B., Seferovic M.D., Liu S., Gratton R.J., Doherty-Kirby A., Lajoie G.A., Han V.K.M., 2006. Altered proteome profiles in maternal plasma in pregnancies with fetal growth restriction. Clin.Proteomics 2, 169–184
  • Han R.X., Choi S.M., Kim M.Y., Quan Y.S., Kim B.C., Diao Y.F., Koqani R., Park C.S., Jin D.I., 2008b. Identification of bovine pregnancy-specific whey proteins using two dimensional gel electrophoresis. Reprod. Develop. Biol. 32, 255–261
  • Han R., Kim H.R., Naruse K., Choi S.M., Kim B.C., Kim M.Y., Park C.S., Jin D.I., 2008a. Identification of bovine pregnancy-specific milk proteins using proteomics. Biol. Reprod. 78, 379 (Abstr.)
  • Herosimczyk A., Dejeans N., Sayd T., Ożgo M., Skrzypczak W.F., Mazur A., 2006. Plasmaproteomeanalysis: 2D gels and chips. J Physiol. Pharmacol. 57, Suppl. 7, 81–93
  • Herosimczyk A., Lepczyński A., Ożgo M., Dratwa-Chałupnik A., Michałek K., Skrzypczak W.F., 2013. Blood plasma protein and lipid profile changes in calvesduring the firstweek of life. Pol. J. Vet. Sci. 16, 425–434
  • Horgan R.P., Clancy O.H., Myers J.E., Baker P.N., 2009. An overview on proteomic and metabolomic technologies and their application to pregnancy research. BJOG - Int. J. Obstet. Gynaecol. 116, 173–181
  • Jacobs J.M., Mottaz H.M., Yu L.R., Anderson D.J., Moore R.J., Chen W.N.U., Auberry K.J., Strittmatter E.F., Monroe M.E., Thrall B.D., Camp D.G., Smith R.D., 2004. Multidimensional proteome analysis of human mammary epithelial cells. J. Proteome Res. 3, 68–75
  • Jarosz A., 2013. Identificationof proteins withvariableexpression inplasmaproteomeof heifersbefore inseminationandduring pregnancy (in Polish). PhD Dissertation, West Pomeranian University of Technology Szczecin (Poland), pp. 1–114
  • Jin D.I., Lee H.R., Kim H.R., Lee H.J., Yoon J.T., Park C.S., 2005. Proteomics analysis of pregnancy-specific serum proteins in bovine. Reprod. Fert. Develop. 18, 183–183
  • Jin Y.C., Lee H.G., Xu C.X. et al., 2010. Proteomic analysis of endogenous conjugated linoleic acid biosynthesis in lactating rats and mouse mammary gland epithelia cells (HC11). Biochim. Biophys. Acta 1804, 745–751
  • Kim H.R., Han R.X., Yoon J.T., Park C.S., Jin D., 2010. A two-dimensional electrophoresis reference map for the bovine placenta during late pregnancy. Proteomics 10, 564–573
  • Kim H.R., Kang J.K., Yoon J.T., Seong H.H., Jung J.K., Lee H.M.,Sik Park C.S., Jin D., 2005. Protein profiles of bovine placenta derived from somatic cell nuclear transfer. Proteomics 5, 4264–4273
  • Klisch K., Boos A., Friedrich M., Herzog K., Feldmann M., Sousa N.M., Beckers J.F., Leiser R., Schuler R., 2006. The glycosylation of pregnancy-associated glycoproteins and prolactin-related protein-I in bovine binucleatetrophoblast giant cells changes before parturition. Reproduction 132, 791–798
  • Koch J.M., Ramadoss J., Magness R.R., 2010. Proteomic profile of uterine luminal fluid from early pregnant ewes. J. Proteome Res. 9, 3878–3885
  • Kuhla B., Albrecht D., Kuhla S., Metges C.C., 2009. Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism. Physiol. Genomics 37, 88–98
  • Kuhla B., Kucia M., Görs S., Albrecht D., Langhammer M., Kuhla S., Metges C.C., 2010. Effect of high-protein diet on food intake and liver metabolism during pregnancy, lactation and after weaning in mice. Proteomics 10, 2573–2588
  • Kurpińska A.K., 2013. Identificationof proteins withvariableexpression inplasmaproteome of cows inthe last monthof pregnancyand in thefirst two months oflactation (in Polish). West Pomeranian University of Technology Szczecin (Poland), pp. 1–130
  • Li S.S., 2012. Preliminary study on serum proteomics in periparturient dairy cows. Agricultural Science Research Paper. Animal Husbandry and Veterinary Medicine, February, pp. 121
  • Lippolis J.D., Reinhardt T.A., 2005. Proteomic survey of bovine neutrophils. Vet. Immunol. Immunopathol. 103, 53–65
  • Lippolis J.D., Reinhardt T.A., 2008. Centennial paper: Proteomics in Animal Science. J. Anim. Sci. 86, 2430–2441
  • Mengé A., Bellet V., Tuaillon E., Van de Perre P., Solassol J., 2008. Comprehensive proteomic analysis of the human milk proteome: contribution of protein fractionation. J. Chromatogr. B 876, 252–256
  • Michel P.E. Crettaz D., Morier P., Heller M., Gallot D., Tissot J., Reymond F., Rossier J.S., 2006. Proteome analysis of human plasma and amniotic fluid by Off-Gel isoelecric focusing followed by nano-LC-MS/MS. Electrophoresis 27, 1169–1181
  • Minhas V., Saxena H.M., 2008. Detection of a uterine secretory protein unique to uninfected repeat breeder (infertile) cows by SDSPAGE. Int. J. Vet. Med. 4, 1–4
  • Miranda G., Mahe M-F., Leroux C., Martin P., 2004. Proteomic tools to characterize the protein fraction of equidae milk. Proteomics 4, 2496–2509
  • Moreira J.M.A., Cabezón T., Gromova I., Gromov P., TimmermansWieleng V., Machado I., Llombart-Bosch A., Kroman N., Rank F., Celisa J.E., 2010. Tissue proteomics of the human mammary gland: Towards an abridged definition of the molecular phenotypes underlying epithelial normalcy. Mol. Oncol. 4, 539–561
  • Morris D.G., Kenny D.A., Earley B., Patton J., Murphy J., Diskin M.G., Brass A., Wathes D.C., 2007. Effect of stage of cycle on the bovine uterine proteome. RMIS No 5234. Athenry Research Raport, pp. 146–147
  • Munoz M., Corrales F.J., Caamano J.M., Diez C., Trigal B., Mora M.I., Martin D., Carrocera S., Gómez E., 2012. Proteome of the early embryo-maternal dialogue in the cattle uterus. J. Proteome Res. 11, 751–766
  • Nair K.S., Jaleel A., Asmann Y.W., Short K.R., Raghavakaimal S., 2004. Proteomic research: potential opportunities for clinical and physiological investigators. Amer. J. Physiol.-Endocrinol. Metab. 286, 863–874
  • Peng L., Rawson P., McLauchlan D., Lehnert K., Snell R., Jordan T.W., 2008. Proteomic analysis of microsomes from lactating bovine mammary gland. J. Proteome Res. 7, 1427–1432
  • Pyo J., Hwang S.I., Oh J., Lee S.J., Kang S.C., Kim J.S., Lim J., 2003. Characterization of a bovine pregnancy-associated protein using two-dimensional gel electrophoresis, N-terminal sequencing and mass spectrometry. Proteomics 3, 2420–2427
  • Rawson P., Stockum C., Peng L. et al., 2012. Metabolic proteomics of the liver and mammary gland during lactation. J. Proteomics 75, 4429–4435
  • Riding G.A., Jones A., Holland M.K., Hill J.R., Lehnert S.A., 2008. Proteomic analysis of bovine conceptus fluids during early pregnancy. Proteomics 8,160–177
  • Roncada P., Gaviraghi A., Liberatori S., Canas B., Bini L., Greppi G.F., 2002. Identification of caseins in goat milk. Proteomics 2, 723–726
  • Senda A., Fukuda K., Ishii T., Urashima T., 2011. Changes in the bovine whey proteome during the early lactation period. Anim. Sci. J. 82, 698–706
  • Shankar R., Gude N., Cullinane F., Brennecke S., Purcell A.W., Moses E.K., 2005. An emerging role for comprehensive proteome analysis in human pregnancy research. Reproduction 129, 685–696
  • Skrzypczak W.F., Ożgo M., Lepczyński A., Herosimczyk A., 2011. Defining the bloodplasmaprotein repertoire of seven day old dairy calves – a preliminary study. J. Physiol. Pharmacol. 62, 313–319
  • Smolenski G., Haines S., Kwan F.Y.S., Bond J., Farr V., Davis S.R., Stelwagen K., Wheeler T.T., 2007. Characterization of host defense proteins in milk using a proteomic approach. J. Proteome Res. 6, 207–215
  • Talamo F., D’Ambrosio C., Arena S., Del Vecchio P., Ledda L., Zehender G., Ferrara L., Scaloni A., 2003. Proteins from bovine tissues and biological fluids: Defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics 3, 440–460
  • Thadikkaran L., Crettaz D., Siegenthaler M.A., Gallot D., Sapin V., Lozzo R.V., Queloz P.A., Schneider P., Tissot J.D., 2005. The role of proteomics in the assessment of premature rupture of fetal membranes. Clin. Chim. Acta 360, 27–36
  • Wang J.F., Zhao X.X., Zhang Y., Xu T.S., 2010. Proteomic analysis of nuclei of mammary tissue from healthy cows and clinical mastitic cows. Chinese J. Anim. Vet. Sci. 41, 105–111
  • Wu W.Z., Wang X.Q., Wu G.Y., Kim S.W., Chen F., Wang J.J., 2010. Differential composition of proteomes in sow colostrum and milk from anterior and posterior mammary glands. J. Anim. Sci. 88, 2657–2664
  • Xia C., Zhang H.Y., Wu L., Xu C., Zheng J.S., Yan Y.J., Yang L.J., Shu S., 2012. Proteomic analysis of plasma from cows affected with milk fever using two-dimensional differential in-gel electrophoresis and mass spectrometry. Res. Vet. Sci. 93, 857–861
  • Xu C., Wang Z., 2008. Comparative proteomic analysis of livers from ketotic cows. Vet. Res. Commun. 32, 263–273
  • Yang Y.X., Cao S.Z., Zhang Y., Zhao X.X., 2009a. Proteomic approach analysis of mammary membrane proteins expression profiles in Holstein cows. Asian-Austr. J. Anim. Sci. 22, 885–892
  • Yang Y.X., Wang J.Q., Bu D.P., Li S.S., Yuan T.J., Zhou L.Y., Yang J.H., Sun P., 2012. Comparative proteomics analysis of plasma proteins during the transition period in dairy cows with or without subclinical mastitis after calving. Czech J. Anim. Sci. 57, 481–489
  • Yang Y.X., Zhao X.X., Zhang Y., 2009b. Proteomic analysis of mammary tissues from healthy cows and clinical mastitic cows for identification of disease-related proteins. Vet. Res. Commun. 33, 295–303
  • Yang Y.X., Zhao X.X., Zhang Y., 2009c. Comparative proteomic analysis of plasma from clinical healthy cows and mastitic cows. Agr. Sci. China 8, 1263–1269


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.