PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 74 | 10 |

Tytuł artykułu

Effect of fundectomy, antrectomy and gastrectomy on pancreatic and brush border enzyme activity in rats

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our study was to investigate the possible effects of the removal of different parts of the stomach (fundectomy, antrectomy, gastrectomy) on the total protein content and enzyme activity in the pancreas and the brush border of the intestinal mucosa. Twenty-four 2.5-month-old male Wistar rats were divided into four groups: sham-operated animals (SHO) and those subjected to gastrectomy (Gx), fundectomy (Fx), and antrectomy (ANT). After a six-week experiment, the rats were sacrificed, and blood was collected for further gastrin analysis in serum. Samples of the pancreas, duodenum, and jejunum (proximal part in 25% of length, middle part in 50% of length, and distal part in 75% of length) were collected to determine the total protein content and enzyme activity. The rats subjected to fundectomy, antrectomy and gastrectomy showed an increased total protein content and enzyme activity (amylase, trypsin) in pancreatic tissue. They exhibited an increase in the total protein content in the homogenates of the mucosa of the proximal, middle and distal jejunum, compared to the control, and a statistical increase in maltase activity. Compared with the control group, the rats subjected to Fx and ANT showed a decreased sucrase activity in the homogenates of the mucosa of the duodenum and of the proximal, middle and distal jejunum. In the gastrectomized rats, there was a statistically significant increase in the total protein content in the homogenates of the mucosa of the jejunum, compared to the control, while the activities of lactase and sucrase were decreased. There was a statistically significant increase in the gastrin level in all experimental groups (Fx, ANT, Gx). We suggest that surgical removal of a part of the stomach radically changes the level of hormones that determine many functions of the organism. Hormonal changes may have an impact on the pancreas and the activity of brush border enzymes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

10

Opis fizyczny

p.665-670,fig.,ref.

Twórcy

autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland
autor
  • Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland

Bibliografia

  • Ariyasu H., Takaya K., Tagami T., Yasar A., Colakoglu N., Kelestimur H.: Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 2001, 86, 4753-4758.
  • Atsuchi K., Asakawa A., Ushikai M., Ataka K., Tsai M., Koyama K., Sato Y., Kato I., Fujimiya M., Inui A.: Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport. 2010, 21, 1008-1011.
  • Bradley E. L., Isaacs J., Hersh T., Davidson E. D., Millikan W.: Nutritional consequences of total gastrectomy. Ann. Surg. 1975, 182, 415-429.
  • Chandra R, Liddle R. A.: Neural and hormonal regulation of pancreatic secretion. Curr. Opin. Gastroenterol. 2009, 25, 441-446.
  • Chen D., Nylander A. G., Norlen P., Hakanson R.: Gastrin does not stimulate growth of the rat pancreas. Scand. J. Gastroenterol. 1996, 31, 404-410.
  • Chu M., Franzén L., Sullivan S., Wingren S., Rehfeld J. F., Borch K.: Pancreatic hypertrophy with acinar cell nodules after longterm fundectomy in the rat. Gut 1993, 34, 988-993.
  • Dahlqvist A.: Assay of intestinal disaccharidases. Scand. J. Clin. Lab. Invest. 1984, 44, 169-172.
  • Dib N., Kiciak A., Pietrzak P., Ferenc K., Jaworski P., Kapica M., Tarnowski W., Zabielski R.: Early-effect of bariatric surgery (Scopinaro Method) on intestinal hormones and adipokines in insulin resistant Wistar rat. J. Physiol. Pharmacol. 2013, 64, 571-577.
  • Domínguez-Muñoz J. E.: Pancreatic exocrine insufficiency, diagnosis and treatment. J. Gastroenterol. Hepatol. 2011, 26. Suppl 2, 12-16.
  • Dornonville dlC., Bjorkqvist M., Sandvik A. K., Bakke I., Zhao C. M., Chen D., Håkanson R.: A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul. Pept. 2001, 99, 141-150.
  • Friess H., Tempia-Caliera A. A., Cammerer G., Büchler M. W.: Indication for pancreatic enzyme substitution following gastric resection. Pancreatology 2001, 1, Suppl 1, 41-48.
  • Gnanapavan S., Kola B., Bustin S. A., Morris D. G., McGee P., Fairclough P., Bhattacharya S., Carpenter R., Grossman A. B., Korbonits M.: The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 2002, 87, 2988-2991.
  • Goebel M., Stengel A., Wang L., Lambrecht N. W. G., Tache Y.: Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci. Lett. 2009, 452, 241-246.
  • Gonzalez R., Perry R. L., Gao X., Gaidhu M. P., Tsushima R. G., Ceddia R. B., Unniappan S.: Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats. Endocrinology 2011, 152, 3628-3637.
  • Gullo L., Costa P. L., Ventrucci M., Mattioli S., Viti G., Labò G.: Exocrine pancreatic function after total gastrectomy. Scand. J. Gastroenterol. 1979, 14, 401-407.
  • Hashimoto N.: Exocrine pancreatic function after total gastrectomy in rat. Hepatogastroenterology 2009, Sep-Oct, 56 (94-95), 1274-1276.
  • Kapica M., Laubitz D., Puzio I., Jankowska A., Zabielski R.: The ghrelin pentapeptide inhibits the secretion of pancreatic juice in rats. J. Physiol. Pharmacol. 2006, 57, 691-700.
  • Kapica M., PuzioI., Kato I., Kuwahara A., Zabielski R.: Role of feed-regulating peptides in pancreatic exocrine secretion. J. Physiol. Pharmacol. 2008, 59, Suppl 2, 145-159.
  • Kotunia A., Wolinski J., Laubitz D., Jurkowska M., Rome V., Guilloteau P., Zabielski R.: Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. J. Physiol. Pharmacol. 2004, 55, Suppl 2, 59-68.
  • Li W., Baraboi E. D., Cluny N. L., Roy M. C., Samson P., Biertho L., Sharkey K. A., Richard D.: Malabsorption plays a major role in the effects of the biliopancreatic diversion with duodenal switch on energy metabolism in rats. Surg. Obes. Relat. Dis. 2015, 11, 356-366.
  • Malfertheiner P., Buchler M., Glasbrenner B., Schafmayer A., Ditschuneit H.: Adaptive changes of the exocrine pancreas and plasma cholecystokinin release following subtotal gastric resection in rats. Digestion 1987, 38, 142-151.
  • Martins C., Kjelstrup L., MostadI. L., Kulseng B.: Impact of sustained weight loss achieved through Roux-en-Y gastric bypass or a lifestyle intervention on ghrelin, obestatin, and ghrelin/obestatin ratio in morbidly obese patients. Obesity Surgery 2011, 21, 6, 751-758.
  • Matyjek R., Kapica M., Puzio I., Bąbelewska M., Zabielski R.: The effect of fundectomy on pancreatic secretion in anaesthetized rats. J. Physiol. Pharmacol. 2004, 55, Suppl 2, 69-75.
  • McCray S.: Lactose Intolerance, Considerations for the Clinician. Practical Gastroenterology 2003, Feb, 21-39.
  • Peat C. M., Kleiman S. C., Bulik C. M., Carroll I. M.: The intestinal microbiome in bariatric surgery patients. Eur. Eat Disord. Rev. 2015, 23, 496-503.
  • Puzio I., Kapica M., Bieńko M., Radzki R., Pawłowska M., Tymicki G.: Fundectomy, antrectomy and gastrectomy influence densitometric, tomographic and mechanical bone properties as well as serum ghrelin and nesfatin-1 levels in rats. Med. Weter. 2014, 70, 604-609.
  • Puzio I., Kapica M., Filip R., Bieńko M., Radzki R. R.: Fundectomy evokes elevated gastrin and lowered ghrelin serum levels accompanied by decrease in geometrical and mechanical properties of femora in rats. Bull. Vet. Inst. Pulawy 2005, 49, 69-73.
  • Quercia I., Dutia R., Kotler D. P., Belsley S., Laferrere B.: Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014, 40, 87-94.
  • Stengel A., Goebel M., Yakubov I., Wang L., Witcher D., Coskun T., Taché Y., Sachs G., Lambrecht N. W.: Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 2009, 150, 232-238.
  • Yang G. T., Zhao H. Y., Kong Y., Sun N. N., Dong A. Q.: Study of the effects of nesfatin-1 on gastric function in obese rats World J. Gastroenterol. 2017, April 28, 23 (16), 2940-2947.
  • Xia Z., Wang G., Li H., Hu C., Wang Q., Li A., Zhao E., Shuai X., Wang J., Cai K., Tao K., Wang G.: Influence of bariatric surgery on the expression of nesfatin-1 in rats with type 2 diabetes mellitus. Curr. Pharm. Des. 2015, 21, 1464-1471.
  • Xia Z. F., Fritze D. M., Li J. Y., Chai B., Zhang C., Zhang W., Mulholland M. W.: Nesfatin-1 inhibits gastric acid secretion via a central vagal mechanism in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G570-577.
  • Zhang A. Q., Li X. L., Jiang C. Y., Lin L., Shi R. H., Che J. D., Oomur Y.: Expression of nesfatin-1/NUCB2 in rodent digestive system. World J. Gastroenterol. 2010, 16, 1735-1741.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c280df66-5c77-4ace-8fa8-97f9d6e68d60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.