Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

A review of characteristics of landfilled municipal solid waste in several countries: physical composition, unit weight, and permeability coefficient


Warianty tytułu

Języki publikacji



The characteristics of landfilled municipal solid waste have great influence on the design, operation, and management of landfills, affecting settlement, slope stability, and leachate/gas well integrity. Through analysis and study we observed that the landfill method is widely used to dispose of municipal solid waste (MSW), especially in developing countries. The research results of MSW landfill properties are different due to waste inhomogeneity. In this paper, MSW physical composition, unit weight, and permeability coefficient of landfills in several countries were reviewed and discussed. Landfilled MSW has strong regional and temporal characteristics. Landfilled MSW of developing countries has high organic content ranges from 75.00% to 97.15%. The organic contents in landfills of most developed regions are relatively small. The unit weight ranged from 4.9-17.8 kN/m³ and the permeability coefficient ranged from 3.5×10⁻² cm/sec to 5.0×10⁻⁸ cm/sec within 60 m. In the process of waste degradation, MSW physical composition, unit weight, and permeability coefficient are changed. Waste classification improves the recovery and utilization of landfill and reduces the amount of waste, which affects the characteristics of landfilled MSW. Thus, strengthening waste classification, recycling, and recovery of MSW is significant and meaningful for construction, operation, and management of landfills.

Słowa kluczowe








Opis fizyczny



  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi´an University of Technology, Shaanxi, China
  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi´an University of Technology, Shaanxi, China
  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi´an University of Technology, Shaanxi, China
  • School of Civil Engineering, Xijing University, Xi’an, China


  • 1. HUANG C.Y., LEE C.C., LI F.C., MA Y.P., JENNY SU, H.J. The seasonal distribution of bioaerosols in municipal landfill site: a 3−yr study. Atmospheric Environment, 36 (27), 4385, 2002.
  • 2. CHEN X., GENG Y., FUJITA T. An overview of municipal solid waste management in China. Waste Management, 30 (4), 716, 2010.
  • 3. KRISTINA O.Z., METTE A.M. Understanding the role of waste prevention in local waste management: A literature review. Waste Management and Research, 34 (10), 980, 2016.
  • 4. JIANG J.G., LOU Z.Y., SIIO H., DUO J., LI Z. Technology selection for MSW treatment in Altiplano areas using FMDM. Waste Management and Research, 27 (7), 634, 2009.
  • 5. US ENVIRONMENTAL PROTECTION AGENCY (EPA). Municipal Solid Waste Generation, Recycling, and Disposal in the US for 2011. Washington, DC, USA: EPA; 2011.
  • 6. TAHEREH M., YASUMASA T. Municipal solid waste management in Tehran: Changes during the last 5 years. Waste Management and Research, 34 (5), 449, 2016.
  • 7. GUPTA N., YADAV K.K., KUMAR V. A review on current status of municipal solid waste management in India. Journal of Environmental Sciences, 37, 206, 2015.
  • 8. YUAN H., WANG L., SU F., HU G. Urban solid waste management in Chongqing: Challenges and opportunities. Waste Management, 26 (9), 1052, 2006.
  • 9. JIN J.J., WANG Z.S., RAN S.H. Solid waste management in Macao: Practices and challenges. Waste Management, 26 (9), 1045, 2006.
  • 10. BAI R., SUTANTO M. The practice and challenges of solid waste management in Singapore. Waste Management, 22 (5), 557, 2002.
  • 11. TIMILSINA B.P. Public and private sector involvement in municipal solid waste management: an overview of strategy, policy and practices. A Journal of the Environment, 6, 68, 2001.
  • 12. SUDHAKAR Y., NT S. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India. Waste Management and Research, 34 (6), 553, 2016.
  • 13. PAN AMERICAN HEALTH ORGANIZATION (PAHO). Diagnosis of municipal solid waste management in Latin America and the Caribbean. Serie Ambiental, No. 18, 1998.
  • 14. FUNARI V., MEISEL T., BRAGA R. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget. Science of The Total Environment, 541, 1549, 2016.
  • 15. KAWAI K., TASAKI T. Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles Waste Management, 18 (1), 1, 2016.
  • 16. DAI Y.C., GORDON M.P.R., YE J.Y., XU D.Y., LIN Z.Y., ROBINSON N.K.L., WOODARD R., HARDER M.K. Why doorstepping can increase household waste recycling. Resources, Conservation and Recycling, 102, 9, 2015.
  • 17. TIAN H.Z., GAO J.J., LU L., ZHAO D., CHENG K., QIU P.P. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environmental Science and Technology, 46 (18), 10364, 2012.
  • 18. VERGARA S.E., TCHOBANOGLOUS G. Municipal solid waste and the environment: a global perspective. Annual Review of Environment and Resources, 37, 277, 2012.
  • 19. HOU D., AL-TABBAA A., GUTHRIE P., WATANABE K. Sustainable waste and materials management: national policy and global perspective. Environmental Science and Technology, 46, 2494, 2012.
  • 20. THANH N.P., MATSUI Y. Compost potential from solid waste: toward sustainable agriculture and mitigation of global warming in Mekong Delta, Vietnam. In: Environmental Change and Agricultural Sustainability in the Mekong Delta. Springer Science Business Media, B.V., 2011.
  • 21. EPA. Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2011. Washington D.C.: EPA; 2013.
  • 22. REDDY K.R., HETTIARACHCHI H., GANGATHULASI J., BOGNER J.E. Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Management, 31 (11), 2275, 2011.
  • 23. LOU X.F., NAIR J. The impact of landfilling and composting on greenhouse gas emissions: a review. Bioresource Technology, 100 (16), 12, 2009.
  • 24. KOERNER R.G., EITH W.A. Drainage capability of fully degraded MSW with respect to various leachate collection and removal systems. Geotechnical Special Publication, 130, 4233, 2005.
  • 25. SHEN L. Liquid depth study and stability analysis of municipal solid waste landfill. M.S. thesis, Zhejiang University, Zhejiang, China, 2011 [In Chinese].
  • 26. MERRY S.M., KAVAZANJIAN JR. E., FRITZ W.U. Reconnaissance of the July 10, 2000, Payatas landfill failure. Journal of Performance of Constructed Facilities, 19 (2), 100, 2005.
  • 27. CAICEDO B., GIRALDO E., YAMIN L. The landslide of Dona Juana Landfill in Bogota. A case study. Proceedings of the fourth international congress on environmental geotechnics (4th ICEG), Rio de Janeiro, Brazil, 11, 2002.
  • 28. BLIGHT, G. Slope failures in municipal solid waste dumps and landfills: a review. Waste Management and Research, 26 (5), 448, 2008.
  • 29. IBRAHIM M.I.M., MOHAMED N.A.E.M. Towards sustainable management of solid waste in Egypt. Procedia Environmental Sciences, 34, 336, 2016.
  • 30. GU B.X., JIANG S.Q., WANG H.K., WANG Z.B., JIA R.F., YANG J., HE S., CHENG R. Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: A review. Waste Management, 61, 67, 2017.
  • 31. GU B., ZHU W., WANG H., ZHANG R., LIU M., CHEN Y., WU Y., YANG X., HE S., CHENG R., YANG J., BI J. Household hazardous waste quantification, characterization and management in China’s cities: a case study of Suzhou. Waste Management, 34 (11), 2414, 2014.
  • 32. SAIDAN M.N., DRAIS A.A., AL-MANASEER E. Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan. Waste Management, 61, 58, 2017.
  • 33. MINISTRY OF MUNICIPAL AFFAIRS. Development of a National Strategy to Improve the Municipal Solid Waste Management Sector in the Hashemite Kingdom of Jordan. Amman, Jordan, 2015.
  • 34. ZHOU H., MENG A.H., LONG Y.Q., LI Q.H., ZHANG Y.G. Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air & Management Association, 64 (5), 597, 2014.
  • 35. ASSAMOI B., LAWRYSHYN Y. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Management, 32 (5), 1019, 2012.
  • 36. GÓMEZ G., MENESES M., BALLINAS L., CASTELLS F. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Management, 29 (7), 2018, 2009.
  • 37. LI Z.S., YANG L., QU X.Y., SU Y.M. Municipal solid waste management in Beijing City. Waste Management, 29 (9), 2596, 2009.
  • 38. FRÉSCA F.R.C. Analysis of Municipal Solid Waste Generation in São Carlos, SP, Considering Its Physical Characterization Master Dissertation. University of São Paulo, São Carlos, SP, Brazil, 2007 [In Portuguese].
  • 39. GIDARAKOS E., HAVAS G., NTZAMILIS P. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete. Waste Management, 26 (6), 668, 2006.
  • 40. BLIGHT G. Landfills-yesterday, today and tomorrow. Waste: A Handbook for Management, 469, 2011.
  • 41. YANG R., XU Z.G., CHAI J.R., QIN Y., LI Y.L. Permeability test and slope stability analysis of municipal solid waste (MSW) in Jiangcungou Landfill, Shaanxi, China. Journal of the Air and Management Association, 66 (7), 655, 2016.
  • 42. MACHADO S.L., KARIMPOUR-FARD M., SHARIATMADARI N., CARVALHO M.F., DO NASCIMENTO J.C.F. Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30 (12), 2579, 2010.
  • 43. GAO W., CHEN Y.M., ZHAN L.T., BIAN X.C. Engineering properties for high kitchen waste content municipal solid waste. Journal of Rock Mechanics and Geotechnical Engineering, 7 (6), 646, 2015.
  • 44. POKHREL D., VIRARAGHAVAN T. Municipal solid waste management in Nepal: practices and challenges. Waste Management, 25 (5), 555, 2005.
  • 45. REDDY K.R., HETTIARACHCHI H., PARAKALLA N.S., GANGATHULASI J. Geotechnical properties of fresh municipal solid waste at orchard hills landfill, USA. Waste Management, 29 (2), 952, 2009.
  • 46. HULL R.M., KROGMANN U., STROM P.F. Composition and characteristics of excavated materials from a New Jersey landfill. Journal of Environmental Engineering, 131 (3), 479, 2005.
  • 47. SAINT-FORT R. Assessing sanitary landfill stabilization using winter and summer waste streams in simulated landfill cells. Journal of Environmental Science and Health Part A, 37 (2), 237, 2002.
  • 48. ZHOU H., MENG A.H., LONG Y.Q., LI Q.H., ZHANG Y.G. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107, 2014.
  • 49. WANG H., WANG C.M. Municipal solid waste management in Beijing: Characteristics and challenges. Waste Management and Research, 31 (1), 67, 2012.
  • 50. YI S., YOO K.Y., HANAKI K. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul. Waste Management, 31 (3), 595, 2011.
  • 51. BOER D.E, JEDRCZAK A., KOWALSKI Z., KULCZYCKA J., SZPADT R. A review of municipal solid waste composition and quantities in Poland. Waste Management, 30 (3), 369, 2010.
  • 52. PULAT H.F., YUKSELEN-AKSOY Y. Compaction behavior of synthetic and natural MSW samples in different compositions. Waste Management and Research, 31 (12), 1255, 2013.
  • 53. BAREITHER C., BENSON C., EDIL T. Effects of waste composition and decomposition on the shear strength of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 138 (10), 1161, 2012.
  • 54. BAREITHER C., BENSON C., EDIL T. Compression behavior of municipal solid waste: immediate compression. Journal of Geotechnical and Geoenvironmental Engineering, 138 (9), 1047, 2012.
  • 55. BABU G.S., LAKSHMIKANTHAN P., SANTHOSH, L. G. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore. Waste Management, 39, 63, 2015.
  • 56. CASTELLI F., MAUGERI M. Mechanical properties of municipal solid waste by SDMT. Waste Management, 34 (2), 256, 2014.
  • 57. ZORNBERG J.G., JERNIGAN B.L., SANGLERAT T.R., COOLEY B.H. Retention of free liquids in landfills undergoing vertical expansion. Journal of Geotechnical and Geoenvironmental Engineering, 125 (7), 583, 1999.
  • 58. ZEKKOS D., ATHANASOPOULOS G.A., BRAY J.D., GRIZI A., THEODORATOS A. Large-scale direct shear testing of municipal solid waste. Waste Management, 30 (8-9), 1544, 2010.
  • 59. MINISTRY OF HOUSING AND URBAN-RURAL DEVELOPMENT OF THE PEOPLE’S REPUBLIC OF CHINA. Technical code for geo-technical engineering of municipal solid waste sanitary landfill. Construction Industry Press, Beijing, China, CJJ176, 2012 [In Chinese].
  • 60. FENG S.J., GAO K.W., CHEN Y.X., LI Y., ZHANG L.M. CHEN H.X. Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Management, 63, 354, 2017.
  • 61. YU L., FRANCISCO B., JESÚS C. Variations of waste unit weight during mechanical and degradation processes at landfills. Waste Management and Research, 29 (12), 1303, 2017.
  • 62. CHEN Y.M., KE H. Engineering characteristics of municipal solid wastes and geotechnical problems of landfills. Engineering Mechanics, 22, 119, 2005 [In Chinese].
  • 63. LI M.Y., JAE H.K., XU Q.Y. Review about hydraulic conductivity of landfilled waste. Environmental Engineering, (8), 80, 2014 [In Chinese].
  • 64. JANG Y.S., KIM Y.W., LEE S.I. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea. Waste Management, 22 (3), 261, 2002.
  • 65. DURMUSOGLU E., SANCHEZ I.M., CORAPCIOGLU M.Y. Permeability and compression characteristics of municipal solid waste samples. Environmental Geology, 50, 773, 2006.
  • 66. OLIVIER F., GOURC J.P. Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell. Waste Management, 27 (1), 44, 2007.
  • 67. HOSSAIN M.S., PENMETHSA K.K., HOYOS L. Permeability of municipal solid waste in bioreactor landfill with degradation. Geotechnical and Geological Engineering, 27, 43, 2009.
  • 68. REDDY K.R., HETTIARACHCHI H., PARAKALLA N., GANGATHULASI J. Hydraulic conductivity of MSW in landfills. Journal of Environmental Engineering, 135 (8), 677, 2009.
  • 69. JIE Y.X., DANZENG D.Z., WEI Y.F. Study on the Permeability of Municipal Solid Waste. Geotechnical Engineering Technique, 19 (6), 307, 2005 [In Chinese].
  • 70. WYSOCKI E., NABAVI T., DJAFARI S. The use of leachate recovery wells to evaluate municipal solid waste hydraulic characteristics at Fresh Kills Landfill. 8th Annual Landfill Symp, 2003.
  • 71. KOELSCH F., FRICKE K., MAHLER C., DAMANHURI E. Stability of landfills-the Bandung dumpsite disaster. Proceedings Sardinia, 2005.
  • 72. STOLTZ G., GOURC J.P., OXARANGO L. Liquid and gas permeabilities of unsaturated municipal solid waste under compression. Journal of Contaminant Hydrology, 118 (1-2), 27, 2010.
  • 73. KE H., RAN L., CHEN Y.M., FENG S.J. Study on MSW filtration experimentation and landfill hydrologic analysis. Chinese Journal of Geotechnical Engineering, 28 (5), 631, 2006 [In Chinese].
  • 74. JAIN P., POWELL J., TOWNSEND T.G., REINHART D.R. Estimating the hydraulic conductivity of landfilled municipal solid waste using the borehole permeameter test. Journal of Environmental Engineering, 132 (6), 645, 2006.
  • 75. WU H.Y., CHEN T., WANG H.T., LU W.J. et al. Field air permeability and hydraulic conductivity of landfilled municipal solid waste in China. Journal of Environmental Management, 98, 15, 2012.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.