PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |

Tytuł artykułu

Changes in soil carbon, nitrogen, and phosphorus along a chronosequence of Caragana microphylla plantation, Northwestern China

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Changes in soil properties during long-term planting require thorough study. The objectives of this study were to determine the influence of planting Caragana microphylla on grassland on soil carbon, nitrogen, and phosphorus to a depth of 20 cm along a 34-year chronosequence encompassing 10 plantation-age groups in northwest, China. We found soil organic carbon increased by -21.84%, 0%, and 39.09% in planting years 5, 21, and 34, respectively. Total nitrogen and total phosphorus began to change in the plantation years 9 and 7, and increased by 70.59% and -28.26% in year 34. Both available nitrogen and available phosphorus increased across the chronosequence. The results indicate that the processes of changes in soil carbon, nitrogen, and phosphorus are different in a long-term chronosequence, and that Caragana microphylla has potential to improve soil properties after it is planted on grassland.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.385-397,fig.,ref.

Twórcy

autor
  • College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
autor
  • College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
autor
  • College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
autor
  • College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
autor
  • College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • Yanchi Research Station, Yanchi, Ningxia 751500, China
autor
  • College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Bibliografia

  • 1. VAN AUKEN O.W. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 31, 197, 2000.
  • 2. PARIZEK B., ROSTAGNO C.M., SOTTINI R. Soil erosion as affected by shrub encroachment in northeastern Patagonia. J. Range. Manage. 55, 43, 2002.
  • 3. MONTANE F., ROVIRA P., CASALS P. Shrub encroachment into mesic mountain grasslands in the Iberian Peninsula: effects of plant quality and temperature on soil C and N stocks. Global Biogeochem. Cy. 21, (4), 2007.
  • 4. MAESTRE F.T., BOWKER M.T., PUCHE M.D., BOWKER M., HINOJOSA M.B., MART I., GARC P., CASTILLO A.P., SOLIVERES S., LUZURIAGA A.L., SA M., CARREIRA J.A., GALLARDO A., ESCUDERO A. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 12, 930, 2009.
  • 5. ZUCCA C., JULITTA F., PREVITALI F. Land restoration by fodder shrubs in a semi-arid agro-pastoral area of Morocco. Catena. 87, 306, 2011.
  • 6. LIU X., LI F.M., LIU D.Q., SUN G.J. Soil organic carbon, carbon fractions and nutrients as affected by land use in semi-arid region of Loess Plateau of China. Pedosphere. 20, 146, 2010.
  • 7. JACKSON R.B., BANNER J.L., JOBBAGY E.G., POCKERMAN W.T., WALL D.H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature. 418, 623, 2002.
  • 8. BAI Y.G., COLBERG T., ROMO J.T., MCCONKEY B., PENNOCK D., FARRELL R. Does expansion of western snowberry enhance ecosystem carbon sequestration and storage in Canadian Prairies? Agr. Ecosyst. Environ. 134, 269, 2009.
  • 9. WOOMER P.L., TOURE A., SALL M. Carbon stocks in Senegal’s Sahel transition zone. J. Arid Environ. 59, 499, 2004.
  • 10. ZHAO H.L., ZHOU R.L., SU Y.Z., ZHANG H., ZHAO L.Y. Sam Drake Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecol. Eng. 31, (1), 2007.
  • 11. DONG X.W., ZHANG X.K., BAO X.L., WANG J.K. Spatial distribution of soil nutrientsafter the establishment of sand-fixing shrubs on sand dune. Plant Soil Environment. 55, (7), 288, 2009.
  • 12. SU Y.Z., ZHANG T.H., LI Y.L., WANG F. Changes in Soil Properties After Establishment of Artemisia halodendron and Caragana microphylla on Shifting Sand Dunes in Semiarid Horqin Sandy Land, Northern China. Environ. Manage. 36, (2), 272, 2005.
  • 13. ZHANG T.H., SU Y.Z., CUI J.Y., ZHANG Z.H., CHANG X.X. A Leguminous Shrub (Caragana microphylla) in Semiarid Sandy Soils of North China. Pedosphere. 16, (3), 319, 2006.
  • 14. ZHOU Q.L., JIANG D.M., LIU Z.M., ALAMUSA, LI X.H., LUO Y.M., WANG H.M. The return and loss of litter phosphorus in different types of sand dunes in Horqin Sandy Land, northeastern China. Journal of Arid Land. 4, (4), 431, 2012.
  • 15. MAO R., ZENG D.H. Changes in Soil Particulate Organic Matter, Microbial Biomass, and Activity Following Afforestation of Marginal Agricultural Lands in a Semi-Arid Area of Northeast China. Environ. Manage. 46, 110, 2010.
  • 16. RITTER E., VESTERDAL L., GUNDERSEN P. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil. 249, 319, 2003.
  • 17. MARIN-SPIOTTA E., SILVER W.L., SWANSTON C. W., OSTERTAG R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob. Change Biol. 15, 1584, 2009.
  • 18. CUNNINGHAM S.C., METZELING K.J., NALLY R.M., THOMSON J.R., CAVAGNARO T.R. Changes in soil carbon of pastures after afforestation with mixed species: Sampling, heterogeneity and surrogates. Agr. Ecosyst. Environ. 158, 58, 2012.
  • 19. ROSENQVIST L., KLEJA D.B., JOHANSSONLEJA M.B. Concentrations and fluxes of dissolved organic carbon and nitrogen in a Picea abies chronosequence on former arable land in Sweden. Forest Ecol. Manag. 259, 275, 2010.
  • 20. MACKENZIE M.D., DELUCA T.H., SALA A. Forest structure and organic horizon analysis along a fire chronosequence in the low elevation forests of western Montana. Forest Ecol. Manag. 203, 331, 2004.
  • 21. WANG C.M., OUYANG H., SHAO B., TIAN Y.Q., ZHAO J.G.,XU H.Y. Soil Carbon Changes Following Afforestation with Olga Bay Larch (Larix olgensis Henry) in Northeastern China. Journal of Integrative Plant Biology. 48, (5), 503, 2006.
  • 22. LIAO J.D., BOUTTON T.W., JASTROW J.D. Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N. Soil Biol. Biochem. 38, 3197, 2006.
  • 23. ZAVALETA E.S., KETTLEY L.S. Ecosystem change along a woody invasion chronosequence in a California grassland. J. Arid Environ. 66, 290, 2006.
  • 24. RAVI SUJITH, D’ODORICO P. Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landscape Ecol. 24, 325, 2009.
  • 25. SU Y.Z., ZHAO H.L. Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China. Ecol. Eng. 20, 223, 2003.
  • 26. YANG Z.P., ZHANG Q., WANG Y.L., ZHANG J.J., CHEN M.C. Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China. J. Arid Environ. 75, 538, 2011.
  • 27. CAO C.Y., JIANG D.M., TENG X.H., JIANG Y., LIANG W.J., CUI Z.B. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Appl. Soil Ecol. 40, 78, 2008.
  • 28. ZHANG Y., CAO C.Y., HAN X.S., JIANG S.Y. Soil nutrient and microbiological property recoveries via native shrub and semi-shrub plantations on moving sand dunes in Northeast China. Ecol. Eng. 53, 1, 2013.
  • 29. ZHANG Y.Q., LIU J.B., JIA B., QIN S.G. Soil Organic Carbon Accumulation in Arid and Semiarid Areas after Afforestation: a Meta-Analysis. Pol. J. Environ. Stud. 22, (2), 611, 2013.
  • 30. PAUL K.I., POLGLASE P.J., KHANNA P.K. Change in soil carbon following afforestation. Forest Ecol. Manag. 168, 241, 2002.
  • 31. LAGANIERE J., ANGERS D A., PARE D. Carbon accumulation in agricultural soils after afforestation: a metaanalysis. Glob. Change Biol. 16, 439, 2010.
  • 32. Institute of Soil Science, Chinese Academy of Sciences (CAS). Soil Physical and Chemical Analysis. pp 524-525, Shanghai Science Technology Press, Shanghai of China, 1978.
  • 33. BRANTLEY S.T., YOUNG D.R. Shrub expansion stimulates soil C and N storage along a coastal soil chronosequence. Glob. Change Biol. 16, 2052, 2010.
  • 34. SCHEDLBAUER J.L. KAVANAGH K.L. Soil carbon dynamics in a chronosequence of secondary forests in northeastern Costa Rica. Forest Ecol. Manag. 255, 1326, 2008.
  • 35. MONTANE F., ROMANYA J., ROVIRA P., CASALS P. Mixtures with grass litter may hasten shrub litter decomposition after shrub encroachment into mountain grasslands. Plant Soil. 368, 459, 2013.
  • 36. BIRD S.B., HERRICK J.E., WANDER M.M., WRIGHTER S.F. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ. Pollut. 116, 445, 2002.
  • 37. BOUWMAN A.F., LEEMANS R. The role of forest soils in the global carbon cycle. In: Carbon forum and functions in forest soils (Eds McFee W, Kelly JM), Soil Science Society of America, Madison, WI, pp. 503-525, 1995.
  • 38. DEL G.I., SIX J., PERESSOTTI A., COTRUFO M.F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob. Change Biol. 9, 1204, 2003.
  • 39. SIX J., CALLEWAERT P., LENDERS S., DEGRYZE S., MORRIS S.J., GREGORICH E.G., PAUL E.A., PAUSTIAN K. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci. Soc. Am. J. 66, 1981, 2002.
  • 40. MCCARRON J.K., KNAPP A.K., BLAIR J.M. Soil C and N responses to woody plant expansion in a mesic grassland. Plant Soil. 257, 183, 2003.
  • 41. SPRINGSTEEN A., LOYA W., LIEBIG M., HENDRICKSON J. Soil carbon and nitrogen across a chronosequence of woody plant expansion in North Dakota. Plant Soil. 328, 369, 2010.
  • 42. QIU L.P., ZHANG X., CHEN J.M., YIN X.Q. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil. 32, 207, 2010.
  • 43. CREAMER C.A., FILLEY T.R., OLK D.C., STOTT D.E., DOOLING V., BOUTTON T.W. Changes to soil organic N dynamics with leguminous woody plant encroachment into grasslands. Biogeochemistry. 113, 307, 2013.
  • 44. BRANTLEY S.T., YOUNG D.R. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets. Oecologia. 155, 337, 2008.
  • 45. WEI X.R., SHAO M.A., FU X.L., HONTON R., LI Y., ZHANG X.C. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry. 96, 149, 2009.
  • 46. ZAIMES G.N., SCHULTZ R.C., ISENHART T.M. Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa. Agr. Ecosyst. Environ. 127, 22, 2008.
  • 47. CHEN C.R., CONDRON L.M., DAVIS M.R., SHERLOCK R.R. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil. 220, 151, 2000.
  • 48. NURUZZAMAN M., LAMBER H., BOLLAND M.D.A., VENEKLAAS E.J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil. 271, 175, 2005.
  • 49. VANLAUWE B., DIELS J., SANGINGA N., CARSKY R.J., DECKERS J., MERCKX R. Utilization of rock phosphate by crops on a representative toposequence in the northern Guinea savanna zone of Nigeria: response by maize to previous herbaceous legume cropping and rock phosphate treatments. Soil Biol. Biochem. 32, (14), 2079, 2000.
  • 50. HUANG C.Y. Soil science. 1st ed. China agriculture press publishing, Beijing, pp. 202-203, 2000.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c26472df-8e9d-4e65-9447-d4b1cf5ef38b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.