PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

RsERF1 derived from wild radish (Raphanus sativus) confers salt stress tolerance in Arabidopsis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The change in environmental parameters affects normal growth of plants, eventually reduces agricultural production. Ethylene plays vital roles in plant stress responses, germination, fruit ripening, organ abscission, pathogen response, and senescence. Expression of an ethylene-responsive transcription factor (ERF) was induced in Korean halophyte, Raphanus sativus var. hortensis f. raphanistroides (wild radish) by 200-mM sodium chloride (NaCl). Raphanus sativus ethylene-responsive transcription factor 1 (RsERF1) is also localized to nucleus, similar to other transcription factors. In yeast, RsERF1 showed transcriptional activation property, by expressing the reporter gene. Being a TF, RsERF1 specifically bound to the cisacting elements, GCC box and DRE/CRT in vitro, to initiate transcription. Homozygous T3 transgenic Arabidopsis, overexpressing RsERF1, showed significant tolerance against salt stress in soil-grown conditions. The tolerance was also marked by an increased germination rate of RsERF1 transgenics in salt-containing media. In RsERF1 overexpression lines, abiotic stress-related genes such as ABF3, ABF4, ADH, Rab18, and SUS1 were upregulated by 200-mM NaCl. ERFs have been studied and proven for their tolerance potential against various abiotic stresses, but RsERF1 belongs to an ERF subgroup called ethylene-responsive transcription factor related to AP2 (ERF-RAP2). Thus, this is a first report for ERF-RAP2 from Korean halophyte cDNA library. We believe that extensive posttranslational modification studies will reveal the role and location of RsERF1 in stress tolerance pathway.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.993-1008,fig.,ref.

Twórcy

  • Department of Genetic Engineering, Dong-A University, 604714 Busan, Korea
autor
  • Department of Genetic Engineering, Dong-A University, 604714 Busan, Korea
autor
  • Department of Genetic Engineering, Dong-A University, 604714 Busan, Korea
autor
  • Department of Genetic Engineering, Dong-A University, 604714 Busan, Korea
  • Department of Genetic Engineering, Dong-A University, 604714 Busan, Korea
autor
  • Department of Genetic Engineering, Dong-A University, 604714 Busan, Korea

Bibliografia

  • Abdelaty S, Montserrat P (2003) Plant AP2/ERF transcription factors. Genetika 35(1):37–50
  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427
  • Amal H, Arjun K, Madana MR, Andy P (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271
  • Ayarpadikannan S, Chung E, Cho C, So H, Kim S, Jeon J, Kwak M, Lee S, Lee J (2012) Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Rep 3:35–48
  • Boller T, Gehri A, Mauch F, Vögeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31
  • Cao Y, Chen S, Zhang J (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signal Behav 3:761–763
  • Chang TW, Jun MS (2013) Characterization of the ZmCK1 gene encoding a calcium-dependent protein kinase responsive to multiple biotic stresses in maize. Plant Mol Biol Rep 31:222–230
  • Chen Y, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915
  • Chen J, Jiang H, Hsieh E, Chen H, Chien C, Hsieh H, Lin T (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351
  • Chung E, Cho C, Yun B, Choi H, So H, Lee S, Lee J (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443:91–99
  • Chung E, Ayarpadikannan S, Cho C, So H, Kim K, Kim S, Kwak M, Kim K, Kim D, Lee S, Lee J (2012) Molecular cloning and characterization of RNA binding protein genes from the wild radish. Genes Genomics 34:663–669
  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci 81:1991–1995
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • Dorota KP, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of Annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410
  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427
  • Gabor J, Jurriaan T, Victor F, Laurent Z, Jean PM, Brigitte MM (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274
  • Gibbs DJ, Lee SC, Md Isa N, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418
  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49
  • Gutierrez RM, Perez RL (2004) Raphanus sativus (Radish): their chemistry and biology. Sci World J 4:811–837
  • Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153:757–772
  • Jin L, Huang B, Li H, Liu J (2009) Expression profiles and transactivation analysis of a novel ethylene-responsive transcription factor gene GhERF5 from cotton. Prog Nat Sci 19:563–572
  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635
  • Khurram Z, Rachid L, Pengjuan G, Hui L, Qinqin H, Taotao W, Hanxia L, Zhibiao Y (2011) A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol 52(6):1055–1067
  • Kihara T, Zhao CR, Kobayashi Y, Takita E, Kawazu T, Koyama H (2006) Simple identification of transgenic Arabidopsis plants carrying a single copy of the integrated gene. Biosci Biotechnol Biochem 70(7):1780–1783
  • Kim WK, Kim JH, Jeong DH, Chun YH, Kim SH, Cho KJ, Chang MJ (2011) Radish (Raphanus sativus L. leaf) ethanol extract inhibits protein and mRNA expression of ErbB2 and ErbB3 in MDAMB-231 human breast cancer cells. Nutr Res Pract 5(4):288–293
  • Kim MJ, Ruzicka D, Shin R, Schachtman DP (2012) The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 5:1042–1057
  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267
  • Kwak KJ, Kim JY, Kim YO, Kang HS (2007) Characterization of transgenic Arabidopsis plants overexpressing high mobility group b proteins under high salinity, drought or cold stress. Plant Cell Physiol 48(2):221–231
  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897
  • Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Methods Mol Biol 323:225–229
  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55:61–81
  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxiainducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315
  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, Van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422
  • Lopato S, Bazanova N, Morran S, Milligan AS, Shirley N, Langridge P (2006) Isolation of plant transcription factors using a modified yeast one-hybrid system. Plant Methods 2:3
  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96
  • Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latché A, Pech JC, Bouzayen M (2006) Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47:1195–1205
  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009
  • Shi H, Lee B, Wu S, Zhu J (2003) Overexpression of a plasma membrane Na⁺/H⁺ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech 21:81–85
  • Smith AJP, Humphries SE (2009) Characterization of DNA-binding proteins using multiplexed competitor EMSA. J Mol Biol 385:714–717
  • Song C, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396
  • Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK (2013) Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 8(3):e59924
  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
  • Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci 93:12142–12149
  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150
  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192
  • Xu Z, Chen M, Li L, Ma Y (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585
  • Yi SY, Kim J, Joung Y, Lee S, Kim W, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136:2862–2874
  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796
  • Zhao Y, Wei T, Yin K, Chen Z, Gu H, Qu L, Qin G (2012) Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460
  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c1f71dd4-a001-4f64-8038-cf0c082b1fb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.