PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Hg concentrations in muscles and gills of fish from shallow lakes of different trophic status (Eastern Poland)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fish are a group of organisms that are highly sensitive to mercury (Hg) contamination of the aquatic environment. At the same time, because this element can be accumulated in tissues, it can pose a serious threat to human health. The main objective of the study was to determine the content of Hg in the muscles (HgM) and gills (HgG) of various species of fish from shallow lakes with varied physicochemical conditions. Sampling was done in 5 lakes from April to November 2012 and 2013. The concentration of Hg in fish tissues was affected by 4 variables, including ammonium nitrogen, chlorophyll-a, oxygen saturation, and temperature, and the first 2 axes explained 78.9% of total variance in Hg concentration. The concentration of Hg in muscles was widely varied depending on the fish species, and its highest concentration was observed in predatory fish such as asp and perch, while the lowest concentration of this element was found in Prussian carp, bream, and rudd. Although content of Hg increased with fish body length, in non-predatory fish this correlation was less clear. The gills of the fish contained lower concentrations of Hg than the muscles. Hg content in muscles was within acceptable weekly limits, but predatory fish consumed in large quantities by the local population may pose a potential risk for human health.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.311-320,fig.,ref.

Twórcy

autor
  • Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Lublin, Poland
  • Sub-Department of Pharmacology, Toxicology and Environmental Protection, Department of Preclinical Veterinary Sciences, University of Life Science in Lublin, Lublin, Poland
  • Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Lublin, Poland
autor
  • Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Lublin, Poland

Bibliografia

  • 1. Hedayati A., Safahieh A. Serum hormone and biochemical activity as biomarkers of Hg toxicity in the yellowfin seabream Acanthopagrus latus. Toxicol. Ind. Health. 28, 306, 2012.
  • 2. Clayden M.G., Kidd K.A., Wyn B., Kirk J.L., Muir D.C.G., O’Driscoll N.J. Hg Biomagnification through Food Webs Is Affected by Physical and Chemical Characteristics of Lakes. Environ. Sci. Technol. 47, 12047, 2013.
  • 3. Pack E.C., Lee S.H., Kim C.H., Lim C.H., Sung D.G., Kim M.H., Park K.H., Lim K.M., Choi D.W., Kim S.W. Effects of Environmental Temperature Change on Hg Absorption in Aquatic Organisms with Respect to Climate Warming. J. Toxicol. Environ. Health A. 77, 1477, 2014.
  • 4. Razavi N.R., Arts M.T., Qu M., Jin B., Ren W., Wang Y., Campbell L.M. Effect of eutrophication on selenium, and essential fatty acids in bighead carp (Hypophthalmichthys nobilis) from reservoirs of eastern China. Sci. Total Environ. 15, 36, 2014.
  • 5. Chételat J., Amyot M., Arp P., Blais J.M., Depew D., Emmerton C.A., Evans M., Gamberg M., Gantner N., Girard C., Graydon J., Kirk J., Lean D., Lehnherr I., Muir D., Nasr M., Poulain A.J., Power M., Roach P., Stern G., Swanson H., van der Velden S.h. Hg in freshwater ecosystems of the Canadian Arctic: Recent advances on its cycling and fate. Sci Total Environ. 510, 41, 2015.
  • 6. Kaya G., Turkoglu S. Bioacumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from Iskenderun Bay, Turkey, and risk assessment from human health. Biol. Trace Elem. Res. 180, 314, 2017.
  • 7. Lescord G.L., Kidd K.A., Kirk J.L., O'Driscoll N.J., Wang X., Muir D.C.G. Factors affecting biotic Hg concentrations and biomagnification through lake food webs in the Canadian high Arctic. Sci. Total Environ. 510, 195, 2015.
  • 8. Wałkuska G., Chałabis-Mazurek A., Szkoda J. Hg content in the trophic chain of the Tanew River, Poland, ecosystem. J. Toxicol. Environ. Health A. 73, 1180, 2010.
  • 9. Hall B.D., Bodaly R.A., Fudge R.J.P., Rudd J.W.M., Rosenberg D.M. Food as the dominant pathway of methylHg uptake by fish. Water Air. Soil Pollut. 100, 13, 1997.
  • 10. Kidd K.A., Batchelar K. Hg. In: Wood C.M., Farrell A.P., Brauner C.J. (eds) Homeostasis and toxicology of non-essential metals (Fish Physiology vol. 31b), Elsevier Press, Amsterdam, 2011.
  • 11. Kidd K.A., Muir D.C.G., Evans M.S., Wang X., Whittle M., Swanson H.K., Johnston T., Guildford S. Biomagnification of Hg through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Sci. Total Environ. 438, 135, 2012.
  • 12. MILLER A., BIGNERT A., PORVARI P., DANIELSSON S., VERTA M. Hg in Perch (Perca fluviatilis) from Sweden and Finland. Water Air Soil Poll. 224, 1472, 2013.
  • 13. ØKELSRUD A., LYDERSEN E., FJELD E. Biomagnification of Hg and selenium in two lakes in southern Norway. Sci. Total Environ. 566 - 567, 596, 2016.
  • 14. ØKELSRUD A., LYDERSEN E., MORENO C., FJELD E. Hg and selenium in free-ranging brown trout (Salmo trutta) in the River Skienselva watercourse, Southern Norway. Sci. Total Environ. 586, 188, 2017.
  • 15. BOSCH A.C., O’NEILL B., SIGGE G. O. KERWATH S.E., HOFFMAN L.C. Hg accumulation in Yellowfin tuna (Thunnus albacares) with regards to muscle type, muscle position and fish size. Food Chem. 190, 351, 2016.
  • 16. Burger J., Gochfeld M. Hg and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci. Total Environ. 409, 1418, 2011.
  • 17. Chen C.Y., Folt C. High plankton densities reduce Hg biomagnification. Environ. Sci. Technol. 39, 115, 2005.
  • 18. Chen C.Y., Stemberger R.S., Kamman N.C., Mayes B.M., Folt C.L. Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast US. Ecotoxicology 14, 135, 2005.
  • 19. Poste A.E., Muir D.C.G., Guildford S.J., Hecky R.E. Bioaccumulation and biomagnification of Hg in African lakes: The importance of trophic status. Sci. Total Environ. 507, 126, 2015.
  • 20. Chalmers A.T., Argue D.M., Gay D.A., Brigham M.E., Schmitt C.J., Lorenz D.L. Hg trends in fish from rivers and lakes in the United States, 1969-2005. Environ. Monit. Assess. 175, 175, 2011.
  • 21. Hanna D. E. L., Buck D. G., Chapman L. J. Effects of habitat on Hg concentrations in fish: a case study of Nile perch (Lates niloticus) in Lake Nabugabo, Uganda. Ecotoxicology. 25 (1), 178, 2016.
  • 22. Jirsa F., Pirker D., Krachler R., Keppler B.K. Total Hg in Sediments, Macrophytes, and Fish from a Shallow Steppe Lake in Eastern Austria. Chem. Biodivers. 11, 1263, 2014.
  • 23. Farkas A., Salänki J., Specziár A. Age- and sizespecific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 37 (5), 959, 2003.
  • 24. Sonesten L. Fish Hg levels in lakes-adjusting for Hg and fish-size covariation. Environ. Pollut. 125, 255, 2003.
  • 25. Johnson B.M., Lepak J.M., Wolff B.A. Effects of prey assemblage on Hg bioaccumulation in a piscivorous sport fish. Sci. Total Environ. 507, 330, 2015.
  • 26. Downs S.G., Macleod C.L., Lester J.N. Hg in precipitation and its relation to bioaccumulation in fish. Water Air. Soil Pollut. 108, 149, 1998.
  • 27. Gantner N., Power M., Iqaluk D., Meili M., Borg H., Sundbom M., Solomon K.R., Lawson G., Muir D.C. Hg concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part I: insights from trophic relationships in 18 lakes. Environ. Toxicol. Chem. 29, 621, 2010.
  • 28. Rolfhus K.R., Hall B.D., Monson B.A., Paterson M.J., Jeremiason J.D. Assessment of Hg bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology. 20, 1520, 2011.
  • 29. Kidd K.A., Paterson M.A., Hesslein R.H., Muir D.C.G., Hecky R.E. Effects of northern pike (Esox lucius) additions on pollutant accumulation and foodweb structure, as determined by δ13C and δ15N, in a eutrophic and an oligotrophic lake. Can J. Fish. Aquat. Sci. 56, 2193, 1999.
  • 30. Simonin H.A., Loukmas J.J., Skinner L.C., Roy K.M. Lake variability: Key factors controlling Hg concentrations in New York State fish. Environ. Pollut. 154, 107, 2008.
  • 31. Pickhardt P.C., Folt C.L., Chen C.Y., Klaue B., Blum J.D. Algal blooms reduce the uptake of toxic methylHg in freshwater food webs. Proc. Natl. Acad. Sci. USA 99, 4419, 2002.
  • 32. Yan H., Rustadbakken A., Yao H., Larssen T., Feng X., Liu T., Shang L., Haugen T.O. Total Hg in wild fish in Guizhou reservoirs, China. J. Environ. Sci. 22, 1129, 2010.
  • 33. Cheng Z., Liang P., Shao D., Wu S., Nie X., Chen K., Li K., Wong M. Hg biomagnification in the aquaculture pond ecosystem in the Pearl River Delta. Arch. Environ. Contam. Toxicol. 61, 491, 2011.
  • 34. McMurtry M.J., Wales K.L., Scheider W.A., Beggs G.L., Dimond P.E. Relationship of Hg concentrations in lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomieu) to the physical and chemical characteristics of Ontario lakes. Can. J. Fish. Aquat. Sci. 46, 426, 1989.
  • 35. Gilmour C.C., Riedel G.S., Ederington M.C., Bell J.T., Benoit J.M., Gill G.A., Stordal M.C. MethylHg concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry. 40, 327, 1998.
  • 36. Pollman C.D. Hg cycling in aquatic ecosystems and trophic state-related variables - Implications from structural equation modeling. Sci. Total Environ. 499, 62, 2014.
  • 37. Moreno C.E., Fjeld E., Deshar M.K., Lydersen E. Seasonal variation of Hg and δ15N in fish from Lake Heddalsvatn, southern Norway. J. Limnol. 74 (1), 21, 2015.
  • 38. Wyn B., Kidd K.A., Burgess N.M., Curry R.A. Hg biomagnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia. Can. J. Fish. Aquat. Sci. 66, 1532, 2009.
  • 39. Liu J., Cao L., Huang W., Dou S. Species- and tissue-specific Hg bioaccumulation in five fish species from Laizhou Bay in the Bohai Sea of China. Chinese J. Oceanol. Limnol. 31 (3), 504, 2013.
  • 40. Gonul L.T., Kucuksezgin F. Hg accumulation and speciation in the muscle of red mullet (Mullus barbatus) and annular sea bream (Diplodus annularis) from Izmir Bay (Eastern Aegean). Mar. Pollut. Bull. 54 (12), 1962, 2007.
  • 41. Lavigne M., Lucotte M., Paquet S. Relationship between Hg concentration and growth rates for walleyes, northern pike, and lake trout from Quebec lakes. N. Am. J. Fish. Manag. 30 (5), 1221, 2010.
  • 42. Stafford C.P., Haines T.A. Hg contamination and growth rate in two piscivore populations. Environ. Toxicol. Chem. 20, 2099, 2001.
  • 43. EC - European Commission Regulation No. 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs (OJ UE, L 173/6, 3.07.2008).
  • 44. EC - European Commission Regulation No. 420/2011 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. (OJ UE, L 111, 30.04.2011).
  • 45. Sedláčková L., Kružíková K., Svobodová Z. Hg speciation in fish muscles from major Czech rivers and assessment of health risks. Food Chem. 150, 360, 2014.
  • 46. Joint FAO/WHO Expert Committee on Food Additives, Seventy-second meeting. Summary and Conclusions. Rome 16-25 February, 2010.
  • 47. World Health Organization (WHO). Evaluation of certain contaminants in food. WHO Technical Report Series, No 959. 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c1647bfe-dfb2-4a25-83ab-f1255510b023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.