PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 73 | 3 |

Tytuł artykułu

Cholinergic and nitrergic neuronal networks in the goldfish telencephalon

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The general organization of cholinergic and nitrergic elements in the central nervous system seems to be highly conserved among vertebrates, with the involvement of these neurotransmitter systems now well established in sensory, motor and cognitive processing. The goldfish is a widely used animal model in neuroanatomical, neurophysiological, and behavioral research. The purpose of this study was to examine pallial and subpallial cholinoceptive, cholinergic and nitrergic populations in the goldfish telencephalon by means of histochemical and immunohistochemical techniques in order to identify neurons containing acetylcholinesterase (AChE), choline acetyltransferase (ChAT), NADPH-diaphorase (NADPHd), and neuronal nitric oxide synthase (nNOS), and to relate their distribution to their putative functional significance. Regions containing AChE-labeled neurons represented terminal fields of cholinergic inputs as well as a widespread distribution of AChE-related enzymes; these regions also usually contained NADPHd- labeled neurons and often contained small numbers of nNOS-positive cells. However, the ventral subdivisions of the medial and lateral parts of the dorsal telencephalic area, and the ventral and lateral parts of the ventral telencephalic area, were devoid of nNOS¬labeled cells. ChAT-positive neurons were found only in the lateral part of the ventral telencephalic area. ChAT- and nNOS-positive fibers exhibited a radial orientation, and were seen as thin axons with en-passant boutons. The distribution of these elements could help to elucidate the role of cholinergic and nitrergic neuronal networks in the goldfish telencephalon.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

73

Numer

3

Opis fizyczny

p.338-353,fig.,ref.

Twórcy

  • Department of Physiology, Faculty of Biology, University of Sevilla, Sevilla, Spain
autor
  • Department of Physiology, Faculty of Biology, University of Sevilla, Sevilla, Spain
autor
  • Department of Physiology, Faculty of Biology, University of Sevilla, Sevilla, Spain

Bibliografia

  • Adrio F, Anadón R, Rodríguez-Moldes I (2000) Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri). J Comp Neurol 426: 602-621.
  • Alonso JR, Porteros A, Crespo C, Arévalo R, Briñón JG, Weruaga E, Aijón J (1998) Chemical anatomy of the macaque monkey olfactory bulb: NADPH-diaphorase/ nitric oxide synthase activity. J Comp Neurol 402: 419¬434.
  • Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cervino MC, Barja P, González A (2000) Distribution of choline acetyltransferase immunoreactiv- ity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 420: 139-170.
  • Ando H, Shi Q, Kusakabe T, Ohya T, Suzuki N, Urano A (2004) Localization of mRNAs encoding alpha and beta subunits of soluble guanylyl cyclase in the brain of rain¬bow trout: comparison with the distribution of neuronal nitric oxide synthase. Brain Res 1013: 13-29.
  • Arévalo R, Alonso JR, García-Ojeda E, Briñón JG, Crespo C, Aijón J (1995) NADPH-diaphorase in the central ner¬vous system of the tench (Tinca tinca L, 1758). J Comp Neurol 352: 398-420.
  • Bond CE, Zimmermann M, Greenfield SA (2009) Upregulation of alpha7 nicotinic receptors by acetylcho- linesterase C-terminal peptides. PLoS One 4: e4846.
  • Bordieri L, Persichini T, Venturini G, Cioni C (2003) Expression of nitric oxide synthase in the preoptic-hypo- thalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Behav Evol 62: 43-55.
  • Braford MR Jr (2009) Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts. Brain Behav Evol 74: 56-76.
  • Brantley RK, Bass AH (1988) Cholinergic neurons in the brain of a teleost fish (Porichthys notatus) located with a monoclonal antibody to choline acetyltransferase. J Comp Neurol 275: 87-105.
  • Breer H, Shepherd GM (1993) Implications of the NO/ cGMP system for olfaction. Trends Neurosci 16: 5-9.
  • Briñón JG, Alonso JR, García-Ojeda E, Arévalo R, Porteros A, Velasco A, Aijón J (1994) Parvalbumin immunoreac- tivity in the telencephalic hemispheres of the tench, Tinca tinca. Arch Ital Biol 132: 1-12.
  • Butcher LL (1995) Cholinergic neurons and networks. In: The Rat Nervous System, 2nd ed. (Paxinos G, Ed.). Academic Press, San Diego, CA, p. 1003-1015.
  • Castro A, Becerra M, Manso MJ, Anadón R (2003) Distribution and development of calretinin-like immuno- reactivity in the telencephalon of the brown trout, Salmo trutta fario. J Comp Neurol 467: 254-269.
  • Castro A, Becerra M, Manso MJ, Anadón R (2006) Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: distribution and comparison with some neuropep¬tides and neurotransmitter-synthesizing enzymes. I.
  • Olfactory organ and forebrain. J Comp Neurol 494: 435-459.
  • Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijon J, Arévalo R (2004) Cholinergic elements in the zebrafish central nervous system: Histochemical and immu- nohistochemical analysis. J Comp Neurol 4742: 75-107.
  • Clemente D, Arenzana FJ, Sánchez-González R, Porteros A, Aijón J, Arévalo R (2005) Comparative analysis of the distribution of choline acetyltransferase in the central nervous system of cyprinids. Brain Res Bull 66: 546¬549.
  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide syntase and neuronal NADPH diaphorase are identical in brain and peripheral tissue. Proc Natl Acad Sci U S A 88: 7797-7801.
  • Dellacorte C, Kalinoski DL, Huque T, Wysocki L, Restrepo D (1995) NADPH diaphorase staining suggests localiza¬tion of nitric oxide synthase within mature vertebrate olfactory neurons. Neuroscience 66: 215-225.
  • Edwards JG, Greig A, Sakata Y, Elkin D, Michel WC (2007) Cholinergic innervation of the zebrafish olfactory bulb. J Comp Neurol 504: 631-645.
  • Ekstrom P (1987) Distribution of choline acetyltransferase- immunoreactive neurons in the brain of a cyprinid teleost (Phoxinusphoxinus L.). J Comp Neurol 256: 494-515.
  • Folgueira M, Anadón R, Yáñez J (2004) Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: Dorsal area and preoptic region. J Comp Neurol 480: 204-233.
  • Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M (2012) Subdivisions of the adult zebrafish sub- pallium by molecular marker analysis. J Comp Neurol 520: 633-655.
  • Giassi AC, Harvey-Girard E, Valsamis B, Maler L (2012) Organization of the gymnotiform fish pallium in relation to learning and memory: I. Cytoarchitectonics and cellu¬lar morphology. J Comp Neurol 520: 3314-3337.
  • Gilbert D, Lecchi M, Arnaudeau S, Bertrand D, Demaurex N (2009) Local and global calcium signals associated with the opening of neuronal alpha7 nicotinic acetylcho- line receptors. Cell Calcium 45: 198-207.
  • Giraldez-Perez RM, Gaytan SP, Ruano D, Torres B, Pasaro R (2008) Distribution of NADPH-diaphorase and nitric oxide synthase reactivity in the central nervous system of the gold¬fish (Carassius auratus). J Chem Neuroanat 35: 12-32.
  • Giraldez-Perez RM, Gaytan SP, Torres B, Pasaro R (2009) Co-localization of nitric oxide synthase and choline acetyltransferase in the brain of the goldfish (Carassius auratus). J Chem Neuroanat 37: 1-17.
  • González A, Moreno N, López JM (2002) Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (amphibia: gymno- phiona): comparative aspects in amphibians, Brain Behav Evol 60: 80-100.
  • Guirado S, Real MA, Dávila JC (2008) Distinct immunohis- tochemically defined areas in the medial amygdala in the developing and adult mouse. Brain Res Bull 75: 214-217.
  • Harvey-Girard E, Giassi AC, Ellis W, Maler L (2012) Organization of the gymnotiform fish pallium in relation to learning and memory: IV. Expression of conserved transcription factors and implications for the evolution of dorsal telencephalon. J Comp Neurol. 520: 3395¬3413.
  • Havekes R, Abel T, Van der Zee EA (2011) The cholinergic system and neostriatal memory functions. Behav Brain Res 221: 412-423.
  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75: 1273-1286.
  • Ichikawa T, Ajiki K, Matsuura J, Misawa H (1997) Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: in situ hybridization histochemistry and immunohistochemistry. J Chem Neuroanat 13: 23-39.
  • Ito H, Yamamoto N (2009) Non-laminar cerebral cortex in teleost fishes? Biol Lett 5: 117-121.
  • Jadhao AG, Malz CR (2004) Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in the brain of a cichlid fish, with remarkable findings in the entopeduncular nucleus: a histochemical study. J Chem Neuroanat 27: 75-86.
  • Jadhao AG, Wilke I, Meyer DL (1999) NADPH-diaphorase expression in the hypothalamo-hypophysial system of different catfish. J Hirnforsch 39: 513-523.
  • Karnovsky MJ, Roots L (1964) A "direct-coloring" thiocho- line method for cholinesterase. J Histochem Cytochem 12: 219-221.
  • Le Jeune H, Jourdan F (1994) Acetylcholinesterase- containing intrinsic neurons in the rat main olfactory bulb: cytological and neurochemical features. Eur J Neurosci 6: 1432-1444.
  • Lema SC, Nevitt GA (2001) Re-evaluating NADPH- diaphorase histochemistry as an indicator of nitric oxide synthase: an examination of the olfactory system of coho salmon (Oncorhynchus kisutch). Neurosci Lett 313: 1-4.
  • López JM, González A (2002) Ontogeny of NADPH dia- phorase/nitric oxide synthase reactivity in the brain of Xenopus laevis. J Comp Neurol 445: 59-77.
  • López JM, Perlado J, Morona R, Northcutt RG, González A (2012) Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinop- terygian fish, the Senegal bichir Polypterus senegalus. J Comp Neurol 521: 24-49.
  • MacLeod NK, Lowe GA (1976) Field potentials in the olfac¬tory bulb of the rainbow trout (Salmo gairdneri): evi¬dence for a dendrodendritic inhibitory pathway. Exp Brain Res 25: 255-266.
  • Marín O, Smeets WJ, González A (1997) Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. J Comp Neurol 382: 499-534.
  • Medina L, Reiner A (1994) Distribution of choline acetyl- transferase immunoreactivity in the pigeon brain. J Comp Neurol 342: 497-537.
  • Medina L, Smeets WJ, Hoogland PV, Puelles L (1993) Distribution of choline acetyltransferase immunoreactiv- ity in the brain of the lizard Gallotia galloti. J Comp Neurol 331: 261-285.
  • Meek J, Nieuwenhuys R (1998) Holosteans and teleosts. In: The Central Nervous System of Vertebrates. (Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C, Eds) Springer-Verlag, Berlin, DE, p. 759-937.
  • Mueller T, Wullimann MF (2009) An evolutionary interpre¬tation of teleostean forebrain anatomy. Brain Behav Evol 74: 30-42.
  • Mueller T, Vernier P, Wullimann MF (2004) The adult central nervous cholinergic system of a neurogenetic model ani¬mal, the zebrafish Danio rerio. Brain Res 1011: 156-169.
  • Mueller T, Dong Z, Berberoglu MA, Guo S (2011) The dor¬sal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381: 95-105.
  • Muñoz M, Muñoz A, Marín O, Alonso JR, Arévalo R, Porteros A, González A (1996) Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi. J Comp Neurol 367: 54-69.
  • Murakami T, Morita Y, Ito H (1983) Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. J Comp Neurol 216: 115-131.
  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915-918.
  • Nickell WT, Shipley MT (1988) Two anatomically specific classes of candidate cholinoceptive neurons in the rat olfactory bulb. J Neurosci 8: 4482-4491.
  • Nieuwenhuys R (2009) The forebrain of actinopterygians revisited. Brain Behav Evol 73: 229-252.
  • Nieuwenhuys R (2G11) The development and general mor¬phology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct Funct 215: 141-157.
  • Northcutt RG (2GG6) Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J Comp Neurol 494: 9G3-943.
  • Northcutt RG (2GG8) Forebrain evolution in bony fishes. Brain Res Bull 75: 191-2G5.
  • Northcutt RG (2G11) Do teleost fishes possess a homolog of mammalian isocortex? Brain Behav Evol 78: 136-138.
  • Paxinos G, Watson CR, Emson PC (198G) AChE-stained horizontal sections of the rat brain in stereotaxic coordi¬nates. J Neurosci Methods 3: 129-149.
  • Pérez SE, Yánez J, Marín O, Anadón R, González A, Rodríguez- Moldes I (2GGG) Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. J Comp Neurol 428: 450-474.
  • Phelps PE, Houser CR, Vaughn JE (1992) Small cholinergic neurons within fields of cholinergic axons characterize olfactory-related regions of rat telencephalon. Neuroscience 48: 121-136.
  • Portavella M, Vargas JP (2GG5) Emotional and spatial learn¬ing in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21: 28GG-28G6.
  • Portavella M, Torres B, Salas C (2004a) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24: 2335-2342.
  • Portavella M, Torres B, Salas C, Papini MR (2004b) Lesions of the medial pallium, but not of the lateral pallium, dis¬rupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362: 75-78.
  • Rodríguez-Moldes I, Molist P, Adrio F, Pombal MA, Yañez SE, Mandado M, Marín O, López JM, González A, Anadón R (2GG2) Organization of cholinergic systems in the brain of different fish groups: a comparative analysis. Brain Res Bull 57: 331-334.
  • Salas C, Broglio C, Durán E, Gómez A, Ocaña FM, Jiménez-Moya F, Rodríguez F (2GG6) Neuropsychology of learning and memory in teleost fish. Zebrafish 3: 157-171.
  • Schober A, Malz CR, Schober W, Meyer DL (1994) NADPH-diaphorase in the central nervous system of the larval lamprey (Lampetra planeri). J Comp Neurol 345: 94-104.
  • Schoenfeld TA, Knott TK (2002) NADPH diaphorase activ¬ity in olfactory receptor neurons and their axons conforms to a rhinotopically-distinct dorsal zone of the hamster nasal cavity and main olfactory bulb. J Chem Neuroanat 24: 269-285.
  • Sims KL, Kauffman FC, Johnson EC, Pickel VM (1974) Cytochemical localization of brain nicotinamide adenine dinucleotide phosphate (oxidized)-dependent dehydroge- nases. Qualitative and quantitative distributions. J Histochem Cytochem 22: 7-19.
  • Singru PS, Sakharkar AJ, Subhedar N (2003) Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus. Brain Res 977: 157¬168.
  • Suarez J, Davila JC, Real MA, Guirado S, Medina L (2006) Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. J Comp Neurol 497: 751¬771.
  • Virgili M, Poli A, Beraudi A, Giuliani A, Villani L (2001) Regional distribution of nitric oxide synthase and NADPH-diaphorase activities in the central nervous sys¬tem of teleosts. Brain Res 901: 202-207.
  • Wullimann MF, Rink E (2002) The teleostean forebrain: a comparative and developmental view based on early pro¬liferation, Pax6 activity and catecholaminergic organiza¬tion. Brain Res Bull 57: 363-370.
  • Wullimann MF, Mueller T (2004) Teleostean and mamma¬lian forebrains contrasted: evidence from genes to behav¬iour. J Comp Neurol 475: 143-162.
  • Yamamoto N, Ishikawa Y, Yoshimoto M, Xue HG, Bahaxar N, Sawai N, Yang CY, Ozawa H, Ito H (2007) A new interpretation on the homology of the teleostean tel¬encephalon based on hodology and a new eversion model. Brain Behav Evol 69: 96-104.
  • Yoshihara Y, Nagao H, Mori K (2001) Neurobiology. Sniffing out odors with multiple dendrites. Science 291: 835-837.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c0592bbd-29bd-43cc-9545-68f4f30fc5a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.