PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 59 | 3 |

Tytuł artykułu

Indirect relationship between lipophilicity and maximum residue limit of drugs determined for fatty tissue

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to determine the correlation between lipophilicity and maximum residue limit (MRL) value specified for veterinary drugs in the fatty tissue of various animal species. The analysis was performed on a group of 73 compounds with different modes of action and MRL values determined for the fatty tissue of animals. Additionally, the logarithm of water/organic phase partition ratio (LogP) and the ratio of ionised and unionised substance in buffer with pH 7.4 (LogD₇.₄) were calculated. The main analysis was performed after the division of the whole group into six fractions. The linear correlation and regression analysis were used to determine the indirect relationship between the mean arithmetic value of LogP or LogD₇.₄ in selected fractions and related LogMRL of the drugs tested. The calculations revealed a linear correlation between fractioned lipophilicity and LogMRL values for the analysed compounds. The existence of indirect relationship between lipophilicity and MRL values determined for fatty tissue was confirmed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

59

Numer

3

Opis fizyczny

p.383-391,fig.,ref.

Twórcy

autor
  • Dofarm, 05-870 Blonie, Poland
  • P.F.O. Vetos-Farma, 58-260 Bielawa, Poland
  • P.F.O. Vetos-Farma, 58-260 Bielawa, Poland
autor
  • Polpharma Biologics, 80-172 Gdansk, Poland
  • Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland

Bibliografia

  • 1. Balaz S., Lukacova V.: Subcellular pharmacokinetics and its potential for library focusing. J Mol Graph Model 2002, 20, 479-490.
  • 2. Blackwell T.: Veterinary Medical Ethics: Ethical question of the month - July 2002. Can Vet J 2002, 43, 749-750.
  • 3. Bolton S., Bon C.: Pharmaceutical Statistics: Practical and Clinical Applications, Fourth Edition, Revised and Expanded, Informa Health Care, New York, 2003.
  • 4. Bonora E., Willeit J., Kiechl, S., Oberhollenzer F., Egger G., Bonadonna R., Muggeo M.: Relationship between insulin and carotid atherosclerosis in the general population. The Bruneck Study. Stroke 1997, 6, 1147-1152.
  • 5. EC, Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. 2010R0037 - EN - 12.12.2010 - 002.001 - 1 Amended by Commission regulations in 2010 European Commission. 2010; pp. 1-76.
  • 6. EC, Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No 1488/94 On Risk Assessment for Existing Substances. Part II. European Commission, 1996.
  • 7. EMEA, Committee for Medicinal Products for Human Use (CHMP), Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. 2006c.
  • 8. FAO, Joint FAO/WHO Technical Workshop on Residues of Veterinary Drugs without ADI/MRL. 2004.
  • 9. FDA, Environmental Impact Assessments (EIA's) For Veterinary Medicinal Products (VMP's) - Phase II VICH G138 Final Guidance. 2006b, pp. 1-37.
  • 10. FDA Guidance for Industry Environmental Assessment of Human Drug and Biologies Applications. 1998, pp. 1-41.
  • 11. Grabowski T., Jaroszewski J.J., Piotrowski W.: Correlations between no observed effect level and selected parameters of the chemical structure for veterinary drugs. Toxicol In Vitro 2010, 24, 953-959.
  • 12. Grabowski T., Jaroszewski J.J., Piotrowski W., Feder M.: Qualitative structure residue relationship analysis in the determination of the maximum residue limit of veterinary drugs. Chemosphere 2012, 87, 312-318.
  • 13. HC, Policy on Extra-Label Drug Use (ELDU) in food producing animals, http://www.hc-sc.gc.ca/dhp-mps/vet/label-etiquet/pol_ eldu-umdde-eng. php (Accessed April 7,2008).
  • 14. Kubinyi H.: QSAR: Hansch analysis and related approaches. In: Methods and principles, published by Wiley-VCH. Weinheim, 1993, Vol. 1, pp. 20-190.
  • 15. Leardi R. Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks. 1st ed., Elsevier, Amsterdam, 2003.
  • 16. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001, 46, 3-26.
  • 17. Machatha S.G., Yalkowsky S.H.: Comparison of the octanol/water partition coefficients calculated by ClogP, ACDlogP and KowWin to experimentally determined values. Int J Pharm 2005, 294, 185-192.
  • 18. Martinez M.N., Amidon G.L.: A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 2002, 42, 620-643.
  • 19. Mattisson I., Wirfält E., Andrén C., Gullberg B., Berglund G.: Dietary fat intake-food sources and dietary correlates in the Malmö Diet and Cancer cohort. Public Health Nutr 2003, 6, 559-569.
  • 20. OECD, 117 OECD Guideline for Testing of Chemicals. 1989, pp. 1-11.
  • 21. OECD, OECD Environment Health and Safety Publications Series on Testing and Assessment No. 58, Report on the Regulatory Uses and Applications in OECD Member Countries of (Quantitative) Structure-Activity Relationship ((Q)SAR) Models in the Assessment of New and Existing Chemicals. 2006, pp. 1-79.
  • 22. OECD, OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships ((Q)SAR) MODELS. 2007, pp. 1-154.
  • 23. OECD, The report from the expert group on (Quantitative) Structure-Activity Relationships ((Q)SARs) on the principles for the validation of (Q)SARs. 2004, pp. 11-198.
  • 24. Palm K., Luthman K., Artursson P.: An alternative explanation for the low membrane permeability of highly lipophilic drugs. Eur J Pharm Sci 1996, 4, 195-195.
  • 25. Peng Y.; Taylor J. M., Yu B.A marginal regression model for multivariate failure time data with a surviving fraction. Lifetime Data Anal 2007, 13, 351-369.
  • 26. Piatkowska M., Jedziniak P., Zmudzki J.: Review: Residues of veterinary medicinal products and coccidiostats in eggs - causes, control and results of surveillance program in Poland. Pol J Vet Sci 2012,15, 803-812.
  • 27. Pratim R.P., Paul S., Mitra I., Roy K.: On two novel parameters for validation of predictive QSAR models. Molecules 2009, 14, 1660-1701.
  • 28. Tetko I.V., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V.A., Radchenko E.V., Zefirov N.S., Makarenko A.S., Tanchuk V.Y., Prokopenko V.V.: Virtual computational chemistry laboratory - design and description. J Comput Aided Mol Des 2005, 19, 453-463.
  • 29. Williams S.G., Taylor J.M., Liu N., Tra Y., Duchesne G.M., Kestin L.L., Martinez A., Pratt G.R., Sandler H.: Use of individual fraction size data from 3756 patients to directly determine the alpha/beta ratio of prostate cancer. Int J Radiat Oncol Biol Phys 2007, 68, 24-33.
  • 30. Wils P., Warnery A., Phung-Ba V., Legrain S., Scherman D.: High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Ther 1994, 269, 654-658.
  • 31. Yu B., Tiwari R.C., Cronin K.A., Feuer E.J.: Cure fraction estimation from the mixture cure models for grouped survival data. Stat Med 2004, 15, 1713-1747.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-c0480eea-177c-40d6-a14b-d2397eb91c41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.