PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 53 | 2 |

Tytuł artykułu

Immature zygotic embryo cultures of Arabidopsis. A model system for molecular studies on morphogenic pathways induced in vitro

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To understand the molecular mechanism controlling in vitro plant morphogenesis, a culture system enabling induction of alternative morphogenic pathways (somatic embryogenesis, SE; shoot organogenesis, ORG) in a well defined population of somatic cells is needed. Arabidopsis is the most useful model plant for genomic studies, but a system in which SE or ORG can be induced alternatively in the same type of explant has not been proposed. Immature zygotic embryos (IZEs) of Arabidopsis provide the only explants with embryogenic potential, and have been recommended for studying mechanisms of SE induced in vitro. This study was aimed at defining culture conditions promoting induction of alternative morphogenic pathways: shoot ORG in IZE explants. The established protocol involves pretreatment of IZE explants with liquid auxin-rich callus induction (CIM) medium, followed by subculture on solid cytokinin-rich shoot induction medium (SIM). The method enables efficient shoot induction in Columbia (Col-0) and Wassilewskija (Ws), genotypes commonly used in molecular studies. During 3 weeks of culture up to 90% of Col-0 and 70% of Ws explants regenerated shoots via an indirect morphogenic pathway. We analyzed the qRT-PCR expression patterns of the LEC (LEC1, LEC2 and FUS3) genes, the key regulators of Arabidopsis embryogenesis, in the IZE explants induced to promote shoot ORG. The sharp decline of LEC expression on SIM medium confirmed that culture of Arabidopsis IZE explants enables experimental manipulation of the morphogenic response of somatic cells. A scheme illustrating various in vitro morphogenic responses of IZEs in relation to hormonal treatment is presented.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

53

Numer

2

Opis fizyczny

p.59-67,fig.,ref.

Twórcy

autor
  • Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor
autor

Bibliografia

  • AKAMA K, SHIRAISHI H, OHTA S, NAKAMURA K, OKADA K, and SHIMURA Y. 1992. Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Reports 12: 7–11.
  • AN G, WATSON BD, and CHIANG CC. 1986. Transformation of tobacco, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiology 81: 301–305.
  • BANNO H, IKEDA Y, NIU QW, and CHUA NH. 2001. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. The Plant Cell 13: 2609–2618.
  • BARTON MP, and OETHIG RS. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: An analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823–831.
  • BAO Y, DHARMAWARDHANA P, MOCKLER DC, and STRAUSS SH. 2009. Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biology 9: 132–147.
  • CARY AJ, CHE P, and HOWELL SH. 2002. Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. The Plant Journal 32: 867–877.
  • CARY A, UTTAMCHANDAIN SJ, SMETS R, VANONCKELEN HA, and HOWELL SH. 2001. Arabidopsis mutants with increased organ regeneration in tissue culture are more competent to respond to hormonal signals. Planta 213: 700–707.
  • CHIAPPETTA A, FAMBRINI M, PETRARULO M, RAPPARINI F, MICHELOTTI V, BRUNO L, GRECO M, BARALDI R, SALVINI M, PUGLIESI C, and BITONTI MB. 2009. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus x H. tuberosus. Annals of Botany 103: 735–747.
  • CHE P, GINGERICH DJ, LALL S, and HOWELL SH. 2002. Global and hormone induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14: 2771–2785.
  • CHE P, LALL S, NETTLETON D, and HOWELL SH. 2006. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology 141: 620–637.
  • DAIMON Y, TAKABE K, and TASAKA M. 2003. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiology 44: 113–121.
  • DAMM B, and WILLMITZER L. 1988. Regeneration of fertile plants from protoplasts of different Arabidopsis thaliana genotypes. Molecular and General Genetics 213: 15–20.
  • ELHITI M, and STASOLLA C. 2011. The use of zygotic embryos as explants for in vitro propagation: an overview. In: Thorpe TA and Yeung [eds.], Plant Embryo Culture. Methods in Molecular Biology, vol. 710, 229–256. E.C. Humana Press, Totowa, New Jersey.
  • EZHOVA TA. 2003. Genetic control of totipotency of plant cells in vitro. Ontogenez 34: 245–52.
  • FAMBRINI M, DURANTE C, CIONINI G, GERI C, GIORGETTI L, MICHELOTTI V, SALVINI M, and PUGLIESI C. 2006. Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Development Genes and Evolution 216: 253–264.
  • FELDMAN KA, and MARKS MD. 1986. Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Science 47: 63–69.
  • GAJ MD. 2001. Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue Organ Culture 64: 39–46.
  • GAJ MD. 2004. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation 43: 27–47.
  • GAJ MD. 2011. Somatic embryogenesis and plant regeneration in the culture of Arabidopsis thaliana (L.) Heynh. immature zygotic embryos. In: Thorpe TA and Yeung [eds.], Plant Embryo Culture. Methods in Molecular Biology, vol. 710, 229–256. E.C. Humana Press, Totowa, New Jersey.
  • GAJ MD, ZHANG S, HARADA JJ, and LEMAUX PG. 2005. LEAFY COTYLEDON genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222: 977–988.
  • GAMBORG OL, MILLER RA, and OJIMA K. 1968. Nutrient requirement of suspension culture of soybean root cells. Experimental Cell Research 50: 151–158.
  • GORDON SP, HEISLER MG, VENUGOPALA REDDY G, OHNO C, DAS P, and MEYEROWITZ EM. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristems. Development 134: 3539–3548.
  • HARADA JJ. 2001. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. Journal of Plant Physiology 158: 405–409.
  • HARADA JJ, STONE SL, KWONG RW, LEE H, KWONG LW, and PELLETIER J. 2003. LEAFY COTYLEDON genes and the control of embryo development. In: Vasil IK [ed.], Plant Biotechnology. 2002 and Beyond, 263–268. Kluwer Academic Publishers, Netherlands.
  • HICKS GS. 1994. Shoot induction and organogenesis in vitro: a developmental perspective. In Vitro Cellular and Developmental Biology 30: 10–15.
  • IKEDA-IWAI M, SATOH S, and KAMADA H. 2002. Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. Journal of Experimental Botany 53: 1575–1580.
  • IRISH VF. 2010. The flowering of Arabidopsis flower development. The Plant Journal 61: 1014–1028.
  • JEANNIN G, BRONNER R, and HAHNE G. 1995. Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annum L.) cultivated in vitro: role of the sugar. Plant Cell Reports 15: 200–204.
  • KOORNNEEF M, and MEINKE D. 2010. The development of Arabidopsis as a model plant. The Plant Journal 61: 909–921.
  • KURCZYNSKA EU, GAJ MD, UJCZAK A, and MAZUR E. 2007. Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226: 619–628.
  • KUROMORI T, TAKAHASHI S, KONDOU Y, SHINOZAKI K, and MATSUI M. 2009. Phenome analysis in plant species using lossof- function and gain-of-function mutants. Plant Cell Physiology 50: 1215–31.
  • LEDWOŃ A, and GAJ MD. 2009. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Reports 28: 1677–1688.
  • LEDWOŃ A, and GAJ MD. 2011. LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis. Plant Growth Regulation 65: 157–167.
  • LLOYD AM, BARNASON AR, ROGERS SG, BYME MC, FRALEY RT, and HORSCH RB. 1986. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234: 464–466.
  • LOTAN T, OHTO M, YEE KM, WEST MAL, LO R, KWONG RW, YAMAGISHI K, FISHER RL, GOLDBERGER RB, and HARADA JJ. 1998. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195–1205.
  • LUO Y, and KOOP HU. 1997. Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202: 387–396.
  • LUO C, and LAM E. 2009. Chromatin charting: global mapping of epigenetic effects. Methods in Molecular Biology 553: 127–39.
  • MURASHIGE T, and SKOOG FA. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology 15: 473–497.
  • NOWAK K, WOJCIKOWSKA B, SZYRAJEW K, and GAJ MD. 2011. Evaluation of Arabidopsis embryogenic systems in vitro and in planta in relation to true somatic embryo frequency. Biologia Plantarum ID 2011–04–1228.R2 (accepted for publication)
  • OZAWA S, YASUTANI I, FUKUDA H, KOMAMINE A, and SUGIYAMA M. 1998. Organogenic response in tissue culture of srd mutants of Arabidopsis thaliana. Development 125: 135–142.
  • PATTON DA, and MEINKE DW. 1988. High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports 7: 233–237.
  • PILLON E, TERZI M, BALDAN B, MARIANI P, and SCHIAVO FL. 1996. A protocol for obtaining embryogenic cell lines from Arabidopsis. The Plant Journal 9: 573–577.
  • REIDT W, ELLERSTRÖM TM, KÖLLE K, TEWES A, TIEDEMANN J, ALTSCHMIED L, and BÄUMLEIN H. 2001. FUS3-dependent gene regulation during late embryogenesis. Journal of Plant Physiology 158: 411–418.
  • SCHMIDT R, and WILLMITZER L. 1988. High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Reports 7: 583–586.
  • SKOOG F, and MILLER CO. 1957. Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symposia of the Society for Experimental Biology 11: 118–131.
  • SHEIKHOLESLAM SN, and WEEKS DP. 1987. Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Molecular Biology 8: 291–298.
  • SU N, HE K, JIAO Y, CHEN C, ZHOU J, LI L, BAI S, LI X, and DENG XW. 2007. Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Molecular Biology 63: 337–349.
  • SU YH, ZHAO XY, LIU YB, ZHANG CL, O'NEIL SD, and ZHANG XS. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. The Plant Journal 59: 448–460.
  • THELLIN O, ZORZI W, LAKAYE B, DE BORMAN B, COUMANS B, HENNEN G, GRISAR T, IGOUT A, and HEINEN E. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75: 291–295.
  • VALVEKENS D, VAN MONTAGU M, and VAN LIJSEBETTENS M. 1988. Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana root explants using kanamycin selection. Proceedings of the National Academy of Sciences 85: 5536–5540.
  • WU Y, HABERLAND G, ZHOU C, and KOOP HU. 1992. Somatic embryogenesis, formation of morphogenetic callus and normal development in zygotic embryos of Arabidopsis thaliana in vitro. Protoplasma 169: 89–96.
  • YASUTANI I, OZAWA S, NISHIDA T, SUGIYAMA M, and KOMAMINE A. 1994. Isolation of temperature-sensitive mutants of Arabidopsis thaliana that are defective in the redifferentiation of shoots. Plant Physiology 105: 815–822.
  • ZHAO QH, FISHER R, and AUER C. 2002. Developmental phases and STM expression during Arabidopsis shoot organogenesis. Plant Growth Regulation 37: 223–231.
  • ZHAO XY, SU YH, CHENG ZJ, and ZHANG XS. 2008. Cell fate switch during in vitro plant organogenesis. Journal of Integrative Plant Biology 50: 816–824.
  • ZUO J, NIU QW, FRUGIS G, and CHUA NH. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal 30: 349–359.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bfc83328-17e2-47f5-9879-2bf5f055de25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.