PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |

Tytuł artykułu

Photoperiod-dependent effect of inflammation on nocturnal gene expression of proinflammatory cytokines and their receptors in pars tuberalis of ewe

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study was designed to determine the influence of photoperiod on the nocturnal gene expression of proinflammatory cytokines such as interleukin (IL)-1β (IL1B), IL-6 (IL6), tumor necrosis factor α (TNF) and their receptors: IL-1 type I receptor (IL1R1), IL-6 receptor (IL6R), glycoprotein 130 (IL6ST), TNF type I and II receptors (TNFRSF1A and TNFRSF1B, respectively) in the pars tuberalis (PT) of ewe with the endotoxin-induced acute inflammation. The studies were performed on adult ewe (n = 24) in two photoperiods: long night (LN; 16:8; October) and short night (SN; 8:16; June). The animals from each photoperiod were divided into two groups: control (n=6) and lipopolysaccharide (LPS)-treated (n = 6). All experiment steps were performed in the darkness. Two hours after the sunset the ewe received the intravenous injection of LPS or an appropriate volume of saline. Three hours after the injections all animals were slaughtered. It was found that melatonin concentration in control ovine serum was higher (P< 0.05) during LN than SN period. Endotoxin decreased (P < 0.05) the melatonin release only in ewe kept under SN condition. The transcripts encoding all examined proinflammatory cytokines and their receptors were expressed in the PT. Moreover, the PT collected from LPS-treated ewe during LN were characterized with higher (P < 0.05) expression of IL6, TNF, IL6ST, TNFRSF1A and TNFRSF1B genes compared with the tissues collected during SN. Similar influence of photoperiod was also observed in the case of TNF gene expression in the control sheep. Obtained results suggest that the PT may be one of the gateways for immune-endocrine interactions and these interactions may be affected by the photoperiod.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

1

Opis fizyczny

p.3-11,fig.,ref.

Twórcy

autor
  • The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
  • The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
autor
  • The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland

Bibliografia

  • Arzt E., Páez Pereda M., Costas M., Sauer J., Renner U., Holsboer F., Stalla G.K., 1998. Cytokine expression and molecular mechanisms of their auto/paracrine regulation of anterior pituitary function and growth. Ann. N.Y. Acad. Sci. 840, 525–531
  • Bauer J., Lengyel G., Bauer T.M., Acs G., Gerok W., 1989. Regulation of interleukin-6 receptor expression in human monocytes and hepatocytes. FEBS Lett. 249, 27–30
  • Blom J.M., Gerber J.M., Nelson R.J., 1994. Day length affects immune cell numbers in deer mice: interactions with age, sex, and prenatal photoperiod. Amer. J. Physiol. 267, R596–R601
  • Cogé F., Guenin S.P., Fery I. et al., 2009. The end of a myth: cloning and characterization of the ovine melatonin MT2 receptor. Brit. J. Pharmacol. 158, 1248–1262
  • Danek J., Żurek U., 2014. Changes in domestic animals after endotoxin administration - a review. Ann. Anim. Sci. 14, 479–489
  • Dupré S.M., 2011. Encoding and decoding photoperiod in the mammalian pars tuberalis. Neuroendocrinology 94, 101–112
  • Esquifino A.I., Pandi-Perumal S.R., Cardinali D.P., 2004. Circadian organization of the immune response: A role for melatonin. Clin. Appl. Immunol. Rev. 4, 423–433
  • Fergani C., Saifullizam A.K., Routly J.E., Smith R.F., Dobson H., 2012. Estrous behavior, luteinizing hormone and estradiol profiles of intact ewes treated with insulin or endotoxin. Physiol. Behav. 105, 757–765
  • Fraser S., Cowen P., Franklin M., Franey C., Arendt J., 1983. Direct radioimmunoassay for melatonin in plasma. Clin. Chem. 29, 396–397
  • Gabay C., Kushner I., 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454
  • Goodman R.L., Jansen H.T., Billings H.J., Coolen L.M., Lehman M.N., 2010. Neural systems mediating seasonal breeding in the ewe. J. Neuroendocrinol. 22, 674-681
  • Guerra M., Blázquez J.L., Peruzzo B., Peláez B., Rodríguez S., Toranzo D., Pastor F., Rodríguez E.M., 2010. Cell organization of the rat pars tuberalis. Evidence for open communication between pars tuberalis cells, cerebrospinal fluid and tanycytes. Cell Tissue Res. 339, 359–381
  • Haldar C., Ahmad R., 2010. Photoimmunomodulation and melatonin. J. Photochem. Photobiol. B. 98, 107–117
  • Herman A.P., Bochenek J., Skipor J., Król K., Krawczyńska A., Antushevich H., Pawlina B., Marciniak E., TomaszewskaZaremba D., 2015. Interleukin-1β modulates melatonin secretion in ovine pineal gland: ex vivo study. Biomed Res. Int. 2015, 526464, doi:10.1155/2015/526464
  • Herman A.P., Kopycińska K., Krawczyńska A., Romanowicz K., Tomaszewska-Zaremba D., 2014a. The effect of repeated endotoxin injections on gonadotropin secretion in ewes. J. Anim. Feed Sci. 23, 217–221
  • Herman A.P., Krawczyńska A., Bochenek J., Antushevich H., Herman A., Tomaszewska-Zaremba D., 2014b. Peripheral injection of SB203580 inhibits the inflammatory-dependent synthesis of proinflammatory cytokines in the hypothalamus. Biomed Res. Int. 2014, 475152, doi:10.1155/2014/475152
  • Herman A.P., Krawczyńska A., Bochenek J., Dobek E., Herman A., Tomaszewska-Zaremba D., 2013. LPS-induced inflammation potentiates the IL-1β-mediated reduction of LH secretion from the anterior pituitary explants. Clin. Dev. Immunol. 2013, 926937, doi: 10.1155/2013/926937
  • Herman A.P., Tomaszewska-Zaremba D., 2010. Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus and anterior pituitary gland of anestrous ewes. Anim. Reprod. Sci. 120, 105–111
  • IZ PIB-INRA, 2009. Standards for Ruminant Feeding (in Polish). National Research Institute of Animal Production, Kraków (Poland)
  • Jovanović I., Ugrenović S., Ljubomirović M., Vasović L., Čukuranović R., Stefanović V., 2014. Folliculo-stellate cells – Potential mediators of the inflammaging-induced hyperactivity of the hypothalamic–pituitary–adrenal axis in healthy elderly individuals. Med. Hypotheses 83, 501–505
  • Kalthoff H., Roeder C., Brockhaus M., Thiele H.G., Schmiegel W., 1993. Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor alpha and epidermal growth factor receptor mRNA. J. Biol. Chem. 268, 2762–2766
  • Koenig J., Snow K., Clark B.D., Toni R., Cannon J.G., Shaw A.R., Dinarello C.A., Reichlin S., Lee S.L., Lechan R.M., 1990. Intrinsic pituitary interleukin-1 beta is induced by bacterial lipopolysaccharide. Endocrinology 126, 3053–3058
  • Lafarque M.M., Ezquer M., Aguado L.I., Oliveros L.B., 2004. Bovine pars tuberalis secretions release growth hormone from rat pars distalis of pituitary gland. Neuro. Endocrinol. Lett. 25, 273–277
  • Lange T., Dimitrov S., Born J., 2010. Effects of sleep and circadian rhythm on the human immune system. Ann. N. Y. Acad. Sci. 1193, 48–59
  • Mattern L.G., Helmreich D.L., Cameron J.L., 1993. Diurnal pattern of pulsatile luteinizing hormone and testosterone secretion in adult male rhesus monkeys (Macaca mulatta): influence of the timing of daily meal intake. Endocrinology 132, 1044–1054
  • Mauriz J.L., Collado P.S., Veneroso C., Reiter R.J., González-Gallego J., 2013. A review of the molecular aspects of melatonin’s antiinflammatory actions: recent insights and new perspectives. J. Pineal Res. 54, 1–14
  • Mignot M., Skinner D.C., 2005. Colocalization of GH, TSH and prolactin, but not ACTH, with βLH-immunoreactivity: evidence for pluripotential cells in the ovine pituitary. Cell Tissue Res. 319, 413–421
  • Morgan P.J., Williams L.M., 1996. The pars tuberalis of the pituitary: a gateway for neuroendocrine output. Rev. Reprod. 1, 153–161
  • Muramami N., Fukata J., Tsukada T., Kobayashi H., Ebisui O., Segawa H., Muro O., Imura H., Nakao K., 1993. Bacterial lipopolysaccharide-induced expression of interleukin-6 messenger ribonucleic acid in the rat hypothalamus, pituitary, adrenal gland, and spleen. Endocrinology 133, 2574–2578
  • Nelson R.J., 2004. Seasonal immune function and sickness responses. Trends Immunol. 25, 187–192
  • Perez-Castro C., Renner U., Haedo M.R., Stalla G.K., Arzt E., 2012. Cellular and molecular specificity of pituitary gland physiology. Physiol. Rev. 92, 1–38
  • Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P., 2004. Determination of stable housekeeping genes, differentially regulated target genes and sampl integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515
  • Rasmussen R., 2001. Quantification on the LightCycler. In: S. Meuer, C. Wittwer, K.-I. Nakagawara (Editors). Rapid Cycle RealTime PCR. Springer-Verlag. Berlin (Germany), pp. 21–34
  • Russel, 1991. Body condition scoring of sheep. In: E. Boden (Editor) Sheep and Goat Practice. Bailliere Tindall. Philadelphia (USA), pp. 3
  • Takao T., Culp S.G., De Souza E.B., 1993. Reciprocal modulation of interleukin-1 beta (IL-1 beta) and IL-1 receptors by lipopolysaccharide (endotoxin) treatment in the mouse brain-endocrine-immune axis. Endocrinology 132, 1497–1504
  • Todini L., Terzano G.M., Borghese A., Debenedetti A., Malfatti A., 2011. Plasma melatonin in domestic female Mediterranean sheep (Comisana breed) and goats (Maltese and Red Syrian). Res. Vet. Sci. 90, 35–39
  • Tsagarakis S., Kontogeorgos G., Kovacs K., 1998. The role of cytokines in the normal and neoplastic pituitary. Crit. Rev. Oncol. Hematol. 28, 73–90
  • Vallières L., Rivest S., 1997. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J. Neurochem. 69, 1668–1683
  • Vankelecom H., Carmeliet P., Van Damme J., Billiau A., Denef C., 1989. Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 49, 102–106
  • Vázquez N., Díaz E., Fernández C., Jiménez V., Esquifino A., Díaz B., 2007. Seasonal variations of gonadotropins and prolactin in the laboratory rat. Role of maternal pineal gland. Physiol. Res. 56, 79–88
  • Weil Z.M., Borniger J.C., Cisse Y.M., Abi Salloum B.A., Nelson R.J., 2014. Neuroendocrine control of photoperiodic changes in immune function. Front. Neuroendocrinol. 37, 108–118
  • Yasuo S., Korf H.W., 2011. The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. Gen. Comp. Endocrinol. 172, 15–22
  • Zagury D., Burny A., Gallo R.C., 2001. Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines. Proc. Nat. Acad. Sci. USA 98, 8024–8029

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bfb81b3f-1ce2-413c-bb37-2723f5ebb757
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.