PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 29 | 2 |
Tytuł artykułu

Growing season length as a key factor of cumulative net ecosystem exchange over the pine forest ecosystems in Europe

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
29
Numer
2
Opis fizyczny
p.129-135,fig.,ref.
Twórcy
  • Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland
autor
  • Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland
autor
  • Department of Meteorology, Poznan University of Life Sciences, Piatkowska 94, 60-649 Poznan, Poland
  • Department of Matter and Energy Fluxes, Global Change Research Center, AS CR, v.v.i. Belidla 986/4a, 603 00 Brno, Czech Republic
Bibliografia
  • Aubinet M., Grelle A., Ibrom A., Rannik S., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer C., Clement R., Elbers J.A., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., and Vesa T., 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res., 30113-175.
  • Aurela M., Tuovinen J.-P., and Laurila T., 1998. Carbon dio-xide exchange in a subarctic peatland ecosystem in northern Europe measured by the eddy covariance technique. J. Geophys. Res., 103 (D10), 11289.
  • Barr A., Black T.A., and Mccaughey H., (Eds) 2009. Climatic and Phenological Controls of the Carbon and Energy Balances of Three Contrasting Boreal Forest Ecosystems in Western Canada. In: Asko Noormets. Phenology of Ecosystem Processes. New York, NY, Springer New York.
  • Carrara A., Kowalski A.S., Neirynck J., Janssens I.A., Yuste J.C., and Ceulemans R., 2003. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric. For. Meteorol., 119(3-4), 209-227.
  • Ceulemans R., Kowalski A.S., Berbigier P., Dolman A.J., Grelle A., Janssens I.A., Lindroth A., Moors E., Rannik U., and Vesala T., 2003. Coniferous Forests (Scots and Maritime Pine): Carbon and Water Fluxes, Balances, Ecological and Ecophysiological Determinants. In: Fluxes of Carbon, Water and Energy of European Forests (Ed. R. Valentini). Berlin, Heidelberg, Springer Berlin Heidelberg.
  • Chapin III F.S., Matson P.A., and Vitousek P., 2011. Principles of Terrestrial Ecosystem Ecology. 2nd edition. Springer New York.
  • Chen W.J.W., Black T.A., Yang P.C., Barr A.G., Neumann H.H., Nesic Z., Blanken P.D., Novak M.D., Eley J., Ketler R.J., and Cuenca R., 1999. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Glob. Chang. Biol., 5(1), 41-53.
  • Chiesi M., Maselli F., Bindi M., Fibbi L., Cherubini P., Arlotta E., Tirone G., Matteucci G., and Seufert G., 2005. Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agric. For. Meteorol., 135(1-4), 22-34.
  • Churkina G., Schimel D., Braswell B.H., and Xiao X., 2005. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol., 11(10), 1777-1787.
  • Ciais P., Paris J.D., Marland G., Peylin P., Piao S.L., Levin I., Pregger T., Scholz Y., Friedrich R., Rivier L., Houwelling S., and Schulze E.D., 2010. The European carbon balance. Part 1: fossil fuel emissions. Glob. Chang. Biol., 16(5), 1395-1408.
  • Coursolle C., Margolis H.A., Giasson M.-A., Bernier P.-Y., Amiro B.D., Arain M.A., Barr G., Black T.A., Goulden M.L., McCaughey J.H., Chen J.M., Dunn L., Grant R.F., and Lafleur P.M., 2012. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol., 165, 136-148.
  • Dragoni D., Schmid H.P., Wayson C.A., Potter H., Grimmond C.S.B., and Randolph J.C., 2011. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. Biol., 17(2), 886-897.
  • Elbers J.A., Jacobs C.M.J., Kruijt B., Jans W.W.P., and Moors E.J., 2011. Assessing the uncertainty of estimated annual totals of net ecosystem productivity: A practical approach applied to a mid latitude temperate pine forest. Agric. For. Meteorol., 151(12), 1823-1830.
  • Falge E., Baldocchi D., Olson R., Anthoni P., Aubinet M., Bernhofer C., Burba G., Ceulemans R., Clement R., Dolman H., Granier A., Gross P., Grünwald T., Hollinger D., Jensen N.-O., Katul G., Keronen P., Kowalski A., Lai C.T., Law B.E., Meyers T., Moncrieff J., Moors E., Munger J.W., Pilegaard K., Rannik Ü., Rebmann C., Suyker A., Tenhunen J., Tu K., Verma S., Vesala T., Wilson K., and Wofsy S., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol., 107(1), 43-69.
  • Hu J., Moore D.J.P., Burns S.P., and Monson R.K., 2010. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Chang. Biol., 16(2), 771-783.
  • Jandl R., Lindner M., Vesterdal L., Bauwens B., Baritz R., Hagedorn F., Johnson D.W., Minkkinen K., and Byrne K.A., 2007. How strongly can forest management influence soil carbon sequestration? Geoderma, 137(3-4), 253-268.
  • Juszczak R., Acosta M., and Olejnik J., 2012. Comparison of daytime and nighttime ecosystem respiration measured by the closed chamber technique on a temperate mire in Poland. Polish J. Environ. Stud., 21(3), 643-658.
  • Juszczak R., Humphreys E., Acosta M., Michalak-Galczewska M., Kayzer D., and Olejnik J., 2013. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil, 366(1-2), 505-520.
  • Keenan T.F., Hollinger D.Y., Bohrer G., Dragoni D., Munger J.W., Schmid H.P., and Richardson A.D., 2014. Brief Communication Arising. Air pollution and forest water use. (Ed. C.D. Holmes). Nature 507, E1–E2 (13 March 2014) doi:10.1038/nature13113
  • Köster E., Köster K., Aurela M., Laurila T., Berninger F., Lohila A., and Pumpanen J., 2013. Impact of reindeer herding on vegetation biomass and soil carbon content: a case study from Sodankylä, Finland. Boreal Environ. Res., 18 (Sup A) (December), 35-42.
  • Lal R., 2005. Forest soils and carbon sequestration. For. Ecol. Manage., 220(1-3), 242-258.
  • Lundin L.-C., Halldin S., Lindroth A., Cienciala E., Grelle A., Hjelm P., Kellner E., Lundberg A., Mölder M., Morén A.-S., Nord T., Seibert J., and Stähli M., 1999. Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agric. For. Meteorol., 98-99, 53-73.
  • Luyssaert S., Ciais P., Piao S.L., Schulze E.-D., Jung M., Zaehle S., Schelhaas M.J., Reichstein M., Churkina G., Papale D., Abril G., Beer C., Grace J., Loustau D., Matteucci G., Magnani F., Nabuurs G.J., Verbeeck H., Sulkava M., Van Der Werf G.R., and Janssens I.A., 2010. The European carbon balance. Part 3: forests. Glob. Chang. Biol., 16(5), 1429-1450.
  • Luyssaert S., Janssens I., Sulkava M., Papale D., Dolman J., Reichstein M., Hollmén J., Martin J.G., Suni T., Vesala T., Loustau D., Law B.E., and Moors E.J., 2007. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Glob. Chang. Biol., 13(10), 2110-2127.
  • Nagy M.T., Janssens I.., Curiel Yuste J., Carrara A., and Ceulemans R., 2006. Footprint-adjusted net ecosystem CO2 exchange and carbon balance components of a temperate forest. Agric. For. Meteorol., 139(3-4), 344-360.
  • Niu S., Luo Y., Fei S., Yuan W., Schimel D., Law B.E., Ammann C., Arain M.A., Arneth A., Aubinet M., Barr A., Beringer J., Bernhofer C., Black T.A., Buchmann N., Cescatti A., Chen J., Davis K.J., Dellwik E., Desai A.R., Etzold S., Francois L., Gianelle D., Gielen B., Goldstein A., Groenendijk M., Gu L., Hanan N., Helfter C., Hirano T., Hollinger D.Y., Jones M.B., Kiely G., Kolb T.E., Kutsch W.L., Lafleur P., Lawrence D.M., Li L., Lindroth A., Litvak M., Loustau D., Lund M., Marek M., Martin T.A., Matteucci G., Migliavacca M., Montagnani L., Moors E., Munger J.W., Noormets A., Oechel W., Olejnik J., Kyaw Tha Paw U, Pilegaard K., Rambal S., Raschi A., Scott R.L., Seufert G., Spano D., Stoy P., Sutton M.A., Varlagin A., Vesala T., Weng E., Wohlfahrt G., Yang B., Zhang Z., and Zhou X., 2012. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol., 194(3), 775-83.
  • NOAA, 2014. NOAA In Situ Carbon Dioxide (CO2) Measure-ments. Available at: http//www.esrl.noaa.gov/gmd/obop/ mlo/programs/esrl/co2/co2.html. 2014. U.S. Department of Commerce, National Oceanic and Atmospheric Admini-stration, Earth System Research Laboratory, Global Monitoring Division.
  • Papale D., Reichstein M., Aubinet M., Canfora E., Bernhofer C., Kutsch W., Longdoz B., Rambal S., Valentini R., Vesala T., and Yakir D., 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3(4), 571-583.
  • Poyatos R., Martínez-Vilalta J., and Čermák J., 2007. Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia, 153(2), 245-59.
  • Schelhaas M.J., Nabuurs G.J., Jans W., Moors E., Sabaté S., and Daamen W.P., 2004. Closing the carbon budget of a Scots pine forest in the Netherlands. Clim. Change, 67 (2-3), 309-328.
  • Schulze E., Hessenmoeller D., Knohl A., Luyssaert S., Boerner A., and Grace J., 2009. Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests? In: Old-Growth Forests. Ecological Studies (Eds C. Wirth, G. Gleixner, M. Heimann). Springer Berlin Heidelberg.
  • Stella P., Lamaud E., Brunet Y., Bonnefond J., Loustau D., and Irvine M., 2009. Simultaneous measurements of CO2 and water exchanges over three agroecosystems in South- West France. Biogeosciences, 6(12), 2957-2971.
  • Suni T., Rinne J., Reissell A., Altimir N., Keronen P., Rannik Ü., Dal Maso M., Kulmala M., and Vesala T., 2003. Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996-2001. Boreal Environ. Res., 8(4), 287-301.
  • Vesala T., Launiainen S., Kolari P., Pumpanen J., Sevanto S., Hari P., Nikinmaa E., Kaski P., Mannila H., Ukkonen E., Piao S.L., and Ciais P., 2010. Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland. Biogeosciences, 7(1), 163-176.
  • Wu C., Chen J.M., Black T.A., Price D.T., Kurz W.A., Desai A.R., Gonsamo A., Jassal R.S., Gough C.M., Bohrer G., Dragoni D., Herbst M., Gielen B., Berninger F., Vesala T., Mammarella I., Pilegaard K., and Blanken P.D., 2013. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob. Ecol. Biogeogr., 22(8), 994-1006.
  • Ziemblińska K., Urbaniak M., Danielewska A., Baran M., Juszczak R., Chojnicki B.H., and Olejnik J., 2013. Seasonal water use efficiency (WUE) index course in pine forest (in Polish). Ann. Environ. Prot., 15(1), 2780-2798.
Uwagi
PL
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-bf9cc4a5-8d25-4d89-bc9c-828450f48548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.