Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Decomposition of plant litter under chromium pollution and associated characteristics of chromium release

Warianty tytułu
Języki publikacji
In vegetated constructed wetlands, plants used for phytoremediation may release pollutants back into the aquatic system as a result of decomposition after senescence, lessening wastewater disposal efficiency. After treatment of wastewater containing chromium with Alternanthera philoxeroides in constructed wetland, plant litter was used to study the release characteristics of chromium with the biomass decomposition under different levels of Cr pollution. Results indicate that decomposition rates of plant litter under zero and low-level Cr pollution were larger than those under high pollution concentration. Under low Cr intensity, the total Cr concentration in the residual increased in the first 40 days, and then decreased to 67.72% of the initial concentration. In the end, the residual ratios of plant litter in different pollution intensities were 57.91%, 48.16% and 71.79% of the initial mass on average separately, and about 57.45%, 67.14% and 38.32% of Cr had been released into the aquatic environment. The changes in percentages of chemical forms in residual should be correlated with the decomposition process reflected by the interactive effects. The release of Cr could be divided into two stages, i.e. immobilization and discharge. These results were possible coming from the moderating effect of different Cr intensities on microbial decomposers.
Słowa kluczowe
Opis fizyczny
  • School of Resource and Environment, Qingdao Agricultural University, Qingdao, China
  • Center for Rural Environmental Studies, Qingdao Agricultural University, Qingdao, China
  • International Office of Cooperation and Exchange, Qingdao Agricultural University, Qingdao, P.R. China
  • 1. REN J., GAO S.-X., TAO L., LI H. Pb removal using mixed substrates in a constructed laboratory-scale unvegetated vertical subsurface-flow wetland. Pol. J. Environ. Stud. 25 (1), 283, 2016.
  • 2. WU S., KUSCHK P., BRIX H., VYMAZAL J., DONG R. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res. 57 (5), 40, 2014.
  • 3. LANGERGRABER G. Are constructed treatment wetlands sustainable sanitation solutions? Water Sci. Technol. 67 (10), 2133, 2013.
  • 4. MENON R., HOLLAND M.M. Phosphorus release due to decomposition of wetland plants. Wetlands. 34 (6), 1191, 2014.
  • 5. VYMAZAL J. Constructed wetlands for wastewater treatment: five decades of experience. Environ. Sci. Technol. 45 (1), 61. 2011.
  • 6. NSENGA KUMWIMBA M., ZHU B., WANG T., MUYEMBE D.K. Distribution and risk assessment of metals and arsenic contamination in man-made ditch sediments with different land use types. Environ. Sci. Pollut. Res. Int. 23 (24), 24808, 2016.
  • 7. MENON R., JACKSON C.R., HOLLAND M.M. The influence of vegetation on microbial enzyme activity and bacterial community structure in freshwater constructed wetland sediments. Wetlands. 33 (2), 365, 2013.
  • 8. WANG Q., XIE H., NGO H.H., GUO W., ZHANG J., LIU C., LIANG S., HU Z., YANG Z., ZHAO C. Microbial abundance and community in subsurface flow constructed wetland microcosms: role of plant presence. Environ. Sci. Pollut. Res. Int. 23 (5), 1, 2016.
  • 9. HONG M.-G., CHANG Y.-S., KIM J.G. Effects of interspecific competition on the growth and competitiveness of five emergent macrophytes in a constructed lentic wetland. Paddy Water Environ. 12 (1), 193, 2014.
  • 10. LIU J., ZHANG W., QU P., WANG M. Cadmium tolerance and accumulation in fi fteen wetland plant species from cadmium-polluted water in constructed wetlands. Front. Environ. Sci. Eng. 10 (2), 262, 2016.
  • 11. WOOD R., MCATAMNEY C. Constructed wetlands for waste water treatment: the use of laterite in the bed medium in phosphorus and heavy metal removal. Hydrobiologia. 340 (1-3), 323, 1996.
  • 12. BHADURI A.M., FULEKAR M.H. Antioxidant enzyme responses of plants to heavy metal stress. Rev. Environ. Sci. Bio. 11 (1), 55, 2012.
  • 13. YAN X., WANG H.-W., WANG Q.-F., RUDSTAMC L.G. Risk spreading, habitat selection and division of biomass in a submerged clonal plant: Responses to heterogeneous copper pollution. Environ. Pollut. 174, 114-20, 2013.
  • 14. MALAR S., VIKRAM S.S., FAVAS P.J., PERUMAL V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. Stud. 55 (1), 54, 2014.
  • 15. Xu L., Zhou Z.-F. Physiological integration affects expansion of an amphibious clonal plant from terrestrial to cu-polluted aquatic environments. Sci. Rep. 7, 43931, 2017.
  • 16. XU L., ZHOU Z.-F. Effects of Cu pollution on the expansion of an amphibious clonal herb in aquaticterrestrial ecotones. Plos One. 11 (10), e0164361, 2016.
  • 17. KATHERINE L.A., FLETCHER T.D., SUN G. Removal processes for arsenic in constructed wetlands. Chemosphere. 84 (8), 1032, 2011.
  • 18. AERTS R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos. 79 (3), 439, 1997.
  • 19. RANI M., MARJORIE M.H. Phosphorus release due to decomposition of wetland plants. Wetlands. 34 (6), 1191, 2014.
  • 20. ROSS S.M. Toxic metals in soil-plant systems. In: Ross SM, editor. Sources and forms of potentially toxic metals in soil-plant systems. Wiley, Chichester, 1994.
  • 21. NAGAJYOTI P.C., LEE K.D., SREEKANTH T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8 (3), 199, 2010.
  • 22. ZAZO J.A., PAULL J.S., JAFFE P.R. Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environ. Pollut. 156 (1), 29, 2008.
  • 23. XU S., JAFFÉ P.R. Effects of plants on the removal of hexavalent chromium in wetland sediments. J. Environ. Qual. 35 (1), 334, 2006.
  • 24. PAPAEVANGELOU V..A., GIKAS G.D., TSIHRINTZIS V.A. Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance,and fate and distribution of this element within the wetland environment. Chemosphere. 168 (7), 716, 2017.
  • 25. VAJRAVEL S., SARAVANAN P. Accumulation of chromium and its effects on physiological and biochemical parameters of Alternanthera philoxeroides seedlings. J. Pharm. Res. 7 (7), 633, 2013.
  • 26. WANG X., LIU Y.-G., ZENG G.-M., CHAI L.-Y., SONG X.-C., MIN Z.-Y., XIAO X. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 62 (3): 389, 2008.
  • 27. PENG Z., LI Z.-G., HE B., LI S.-L., YANG P.-F., LI Z.-W., LIANG H. Root decomposition of Coix aquatica Roxb in constructed wetlands and release and changes in chemical form of chromium. Acta Scien. Circum. 35 (1), 238, 2015.
  • 28. WANG X., LIU Y.-G., ZENG G.-M., CHAI L.-Y., SONG X.-C., MIN Z.-Y., XIAO X. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 62 (3), 389, 2008.
  • 29. OLSON J. S. Energy storage and the balance of products and decomposers in ecological systems. Ecology. 44, 322, 1963.
  • 30. KUMWIMBA M.N., DZAKPASU M., ZHU B., MUYEMBE D.K. Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species. Water Air Soil Pollut. 227 (11), 405, 2016.
  • 31. SI W.-T., ZHANG W.-Y., LV Y., YANG F., LIU J.-M., ZHANG Y.-M. Heavy metal removal in a constructed wetland and benefits for the development of the toad bufo raddei. Pol. J. Environ. Stud. 23 (6), 2207, 2014.
  • 32. SAEED T., SUN G.A. Review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manage. 112, 429, 2012.
  • 33. GRASSET C., LEVREY L.H., DELOLME C., ARTHAUD F., BORNETTE G. The interaction between wetland nutrient content and plant quality controls aquatic plant decomposition. Wetl. Ecol. Manage. 25, 211, 2017.
  • 34. SOLLINS P., HOMANN P., CALDWELL B.A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma. 74, 65, 1996.
  • 35. GULIS V., SUBERKROPP K. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biol. 48, 123, 2003.
  • 36. HERNÁNDEZ D.L., HOBBIE S.E. The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil. 335, 397, 2010.
  • 37. CORSTANJE R., REDDY K.R., PORTIER K.M. Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquat. Bot. 84 (1), 70, 2006.
  • 38. ANYANWU C.U., EZAKA E. Growth responses of chromium (vi) tolerant bacteria to different concentrations of chromium. Int. J. Basic Appl. Sci. 11 (5), 41, 2011.
  • 39. VILLAESCUSA I., MARTI S., MATAS C., MARTINE M., RIBÓ J.M. Chromium(VI) toxicity to luminescent bacteria. Environ. Toxicol. Chem. 16 (5), 871, 2010.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.