PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 73 | 10 |

Tytuł artykułu

Mikrobiom jelitowy kury domowej - rozwój i funkcja

Warianty tytułu

EN
Chicken intestinal microbiome: Development and function

Języki publikacji

PL

Abstrakty

EN
Chicken ceca contain an immense number of microorganisms collectively known as the microbiome. This community is now recognized as an essential component of the intestinal ecosystem and referred to as a metabolic organ exquisitely tuned to the host’s physiology. These functions include the ability to process otherwise indigestible components of the feed, converting them into energy and body mass. The gut microbiome can also affect intestinal morphology and modulate the development and function of the immune system. This microbiota contains a rich collection of genes encoding enzymes necessary for decomposition of dietary polysaccharides and oligosaccharides, nitrogen metabolism, fatty acid and lipid metabolism, and pathways involved in a hydrogen sink. Chickens, like most animals, lack the genes for glycoside hydrolase, polysaccharide lyase, and carbohydrate esterase enzymes that are necessary to facilitate the degradation of non-starch polysaccharides. During the decomposition of dietary polysaccharides, bacteria produce short-chain (volatile) fatty acids (SCFAs), such as acetic, propionic and butyric acid. These SCFASs are absorbed transepithelially and serve as a source of energy for the host. The accumulation of molecular hydrogen released during fermentation leads to fermentation slowdown or to the production of less energy-efficient substances, such as ethanol, butyrate and propionate. The presence of bacteria that act as a hydrogen sink results in a switch to the more productive fermentation into acetate and increased production of SCFAs. Such activity could lead to a significant improvement in poultry production and the associated economics.

Wydawca

-

Rocznik

Tom

73

Numer

10

Opis fizyczny

s.618-625,bibliogr.

Twórcy

autor
  • Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
  • Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
  • Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
  • Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
  • Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
  • Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa

Bibliografia

  • Abrams G. D., Bauer H., Sprinz H.: Influence of the normal flora on mucosal morphology and cellular renewal in the ileum A comparison of germ-free and conventional mice. Lab. Invest. 1963, 12, 355-364.
  • Alemka A., Whelan S., Gough R., Clyne M., Gallagher M. E., Carrington S. D., Bourke B.: Purified chicken intestinal mucin attenuates Campylobacter jejuni pathogenicity in vitro. J. Med. Microbiol. 2010, 59, 898-903.
  • Apajalahti J.: Comparative gut microflora metabolic challenges, and potential opportunities. J. Appl. Poult. Res. 2005, 14, 444-453.
  • Barnes E. M., Mead G. C., Barnum D. A., Harry E. G.: The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. Br. Poult. Sci. 1972, 13, 311-326.
  • Binek M.: Patogeneza salmonelloz u kur: Zakażenia Salmonella Typhimurium, Salmonella Enteritidis i Salmonella Gallinarum u piskląt. Magazyn Wet. Supl. Choroby ptaków 2007, s. 6-9.
  • Binek M., Borzemska W., Pisarski R., Błaszczak B., Kosowska G., Malec H., Karpińska E.: Evaluation of the efficacy of feed providing on development of gastrointestinal microflora of newly hatched broiler chickens. Arch. Geflügelk. 2000, 64, 147-151.
  • Binek M., Kizerwetter-Świda M., Sikora A.: Rozwój relacji gospodarz–mikroflora, [w:] Skrzypczak W., Stefaniak T., Zabielski R. (red.): Fizjologia noworodka z elementami patofizjologii. PWRiL, Warszawa 2011, s. 244-273.
  • Błaszczak B., Karpińska E., Kosowska G., Degórski A., Borzemska W., Binek M.: Kształtowanie mikroflory przewodu pokarmowego piskląt w okresie okołolęgowym poprzez podawanie paszy i zasiedlanie preparatem Aviguard. Med. Weter. 2001, 57, 741-744.
  • Bott M., Pfister K., Burda P., Kalbermatter O., Woehlke G., Dimroth P.: Methylmalonyl-CoA decarboxylase from Propionigenium modestrum cloning and sequencing of the structural genes and purification of the enzyme complex. Eur. J. Biochem. 1992, 250, 590-599.
  • Brisbin J. T., Gong J., Orouji S., Esufali J., Mallick A. I., Parvizi P., Shewen P. E., Sharif S.: Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin. Vaccine Immunol. 2011, 18, 1447-1455.
  • Brisbin J. T., Gong J., Parvizi P., Sharif S.: Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin. Vaccine Immunol. 2010, 17, 1337.
  • Calcinaro F., Dionisi S., Marinaro M., Candeloro P., Bonato V., Marzotti S., Corneli R. B., Ferretti E., Gulino A., Grasso F., De Simone C., Di Mario U., Falorni A., Boirivant M., Dotta F.: Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 2005, 48, 1565-1575.
  • Choe D. W., Loh T. C., Foo H. L., Hair-Bejo M., Awis Q. S.: Egg production, faecal pH and microbial population, small intestine morphology, and plasma and yolk cholesterol in laying hens given liquid metabolites produced by Lactobacillus plantarum strains. Brit. Poultry Sci. 2012, 53, 106-115.
  • Christensen H. R., Frokiaer H., Pestka J. J.: Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168, 171-178.
  • Cisek A. A., Binek M.: Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol. J. Vet. Sci. 2014, 17, 385-394.
  • Colby G. D., Chen J. S.: Purification and properties of 3-hydroxybutyryl-Coenzyme-a dehydrogenase from Clostridium-Beijerinckii (Clostridium butylicum) Nrrl-B593. Appl. Environ. Microb. 1992, 58, 3297-3302.
  • Crisol-Martínez E., Stanley D., Geier M. S., Hughes R. J., Moore R. J.: Sorghum and wheat differentially affect caecal microbiota and associated performance characteristics of meat chickens. Peer J. 2017, 5, e3071.
  • Danzeisen J. L., Kim H. B., Isaacson R. E., Tu Z. J., Johnson T. J.: Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, e27949.
  • Davis L. M., Kakuda T., DiRita V. J.: A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J. Bacteriol. 2009, 191, 1631-1640.
  • Dehghani N., Jahanian R.: Effects of dietary organic acid supplementation on immune responses and some blood parameters of broilers fed diets with different protein lewels. World’s Poultry Science Journal, Suppl. 1, Book of Abstracts, Salvador – Bahia – Brazil, 5-9.08.2012.
  • Den Hartog G., De Vries-Reilingh G., Wehrmaker A. M., Savelkoul H. F. J., Parmentier H. K., Lammers A.: Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota. Benef. Microbes 2016, 7, 677-685.
  • Derache D., Esnault E., Bonsergent C., Vern Y. L., Quéré P., Lalmanach A.-Ch.: Differential modulation of β-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Develop. Compar. Immunol. 2009, 33, 959-966.
  • Derrien M., Collado M. C., Ben-Amor K., Salminen S., de Vos W. M.: The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 2008, 74, 1646-1648.
  • Derrien M., van Passel M. W., van de Bovenkamp J. H., Schipper R. G., de Vos W. M., Dekker J.: Mucinbacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010, 1, 254-268.
  • Eastwood M.: Physicochemical properties of dietary fibre in the foregut, [w:] Cherbut C., Barry J. L., Lairan D., Durand M. (red.): Dietary Fibre: Mechanisms of action in human physiology and metabolism. John Libby Eurotext, Paryż 1995, s. 17-28.
  • Emami N. K., Daneshmand A., Naeini S. Z., Graystone E. N., Broom L. J.: Effects of commercial organic acid blends on male broilers challenged with E. coli K88: Performance, microbiology, intestinal morphology, and immune response. Poult. Sci. 2017, doi: 10.3382/ps/pex106.
  • Fink L. N., Zeuthen L. H., Christensen H. R., Morandi B., Frokiaer H., Ferlazzo G.: Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int. Immunol. 2007, 19, 1319-1327.
  • Gross R., Simon J.: The hydE geneis essential for the formation of Wolinella succinogenes NiFe-hydrogenase. Fems Microbiol. Lett. 2003, 227, 197-202.
  • Hammons S., Lyn Oh P. L., Martínez I., Kenzi Clark K., Vicki L., Schlegel V. L., Sitorius E., Sheila E., Scheideler S. E., Walter J.: A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens. Syst. App. Microbiol. 2010, 33, 275-281.
  • Hegde S. E., Rolls B. A., Coates M. E.: The effects of the gut microflora and dietary fibre on energy utilization by the chick. Br. J. Nutr. 1982, 48, 73-80.
  • Hillier L. W., Miller W., Birney E., Warren W., Hardison R. C.: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695-716.
  • Hong Y. H., Song W., Lee S. H., Lillehoj H. S.: Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poultry Sci. 2012, 91, 1081-1088.
  • Howlett R. M., Hughes B. M., Hitchcock A., Kelly D. J.: Hydrogense activity in the footborne pathogen Campylobacter jejuni depends upon a novel ABCtype nickel transporter (NikZYXWV) and is SlyD-independent. Microbiology 2012, 158, 1645-1655.
  • Hubener K., Vahjen W., Simon O.: Bacterial responses to different dietary cereal types and xylanase supplementation in the intestine of broiler chicken. Arch. Anim. Nutr. 2002, 56, 167-187.
  • Hughes R. J.: Relationship between digesta transit time and apparent metabolisable energy value of wheat in chickens. Br. Poultry Sci. 2008, 49, 716-720.
  • Hume M. E., Kubena L. F., Edrington T. S., Donskey C. J., Moore R. W., Ricke S. C., Nisbet D. J.: Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poultry Sci. 2003, 82, 1100-1107.
  • Immerseel F. van, Boyen F., Gantois I., Timbermont L., Bohez L., Pasmans F., Haesebrouck F., DuCatelle R.: Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poultry Sci. 2005, 84, 1851-1856.
  • Jia W., Slominski B. A., Bruce H. L., Blank G., Crow G., Jones O.: Effects of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinical Clostridium perfringens challenge. Poultry Sci. 2009, 88, 32-40.
  • Józefiak D., Rutkowski A., Martin S. A.: Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Tech. 2004, 113, 1-15.
  • Karasawa Y.: Significant role of the nitrogen recycling system through the ceca occurs in protein-depleted chickens. J. Exp. Zool. 1999, 283, 418-425.
  • Karpińska E., Błaszczak B., Kosowska G., Degórski A., Binek M., Borzemska W.: Growth of the intestinal anaerobes in the newly hatched chicks according to the feeding and providing with normal gut flora. Bull. Vet. Inst. Pulawy 2001, 45, 105-109.
  • Kelsall B. L.: Innate and adaptive mechanisms to control pathological intestinal inflammation. J. Pathol. 2008, 214, 242-259.
  • Killer J., Marounek M.: Fermentation of mucin by bifidobacteria from rectal samples of humans and rectal and intestinal samples of animals. Folia Microbiol. (Praha) 2011, 56, 85-89.
  • Latshaw J. D., Zhao L.: Dietary protein effects on hen performance and nitrogen excretion. Poultry Sci. 2011, 90, 99-106.
  • Lawley T. D., Bouley D. M., Hoy Y. E., Gerke C., Relman D. A., Monack D. M.: Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 2008, 76, 403-416.
  • LeBlanc J. G., Milani C., de Giori G. S., Sesma F., van Sinderen D., Ventura M.: Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160-168.
  • Lei F., Yin Y., Wang Y., Deng B., Yu H. D., Li L., Xiang C., Wang S., Zhu B., Wang X.: Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Appl. Environ. Microbiol. 2012, 78, 5763-5772.
  • Li G. H., Hong Z. M., Jia Y. J., You J. M., Zhang J. H., Liu B. S.: Probiotic Lactobacilli stimulate avian beta-defensin 9 expression in cultured chicken small intestinal epithelial cells. Proc. Nutrition Society 2012, 71 (OCE3), E239.
  • Louis P., Flint H. J.: Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. Fems Microbiol. Lett. 2009, 294, 1-8.
  • Louis P., McCrae S. I., Charrier C., Flint H. J.: Organization of butyrate synthetic genes in human colonic bacteria: phylogenetic conservation and horizontal gene transfer. Fems Microbiol. Lett. 2007, 269, 240-247.
  • Lu J., Idris U., Harmon B., Hofacre C., Maurerr J. J., Lee M. D.: Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 2003, 69, 6816-6824.
  • Macfarlane S., Macfarlane G. T.: Regulation of short-chain fatty acid production. P. Nutr. Soc. 2003, 62, 67-72.
  • Madajczak G., Kizerwetter M., Binek M.: Zjawiska odpornościowe i immunoprofilaktyka w salmonellozie. Med. Weter. 2003, 59, 287-292.
  • Margolles A., Fernández-García M., de los Reyes-Gavilán C. G., Ruas-Madiedo P.: Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 2006, 74, 1936.
  • McWhorter T. J., Caviedes-Vidal E., Krasov W. H.: The integration of digestion and osmoregulation in the avian gut. Biol. Rev. 2009, 84, 533-565.
  • Medie F. M., Davies G. J., Drancourt M., Henrissat B.: Genome analyses highlight the different biological roles of cellulases. Nat. Rev. Microbiol. 2012, 10, 227-U.
  • Meimandipour A., Soleimanifarjam A., Azhur K., Hair-Bejo M., Shuhaimi M., Nateghi L., Yazid A. M.: Age effect on short chain fatty acids concentration and pH values in the gastrointestinal tract of broiler chickens. Arch. Geflügelk. 2011, 75, 164-168.
  • Pan D., Yu Z.: Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014, 5, 95-106.
  • Pope P. B., Denman S. E., Jones M., Tringe S. G., Barry K., Malfatlis S. A., McHardy A. C., Heng J. F., Hugenholtz P., McSweeney C. S., Morrison M.: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. P. Natl. Acad. Sci. USA 2010, 107, 14793-14798.
  • Prasai T. P., Walsh K. B., Bhattarai S. P., Midmore D. J., Van T. T. H., Moore R. J., Stanley D.: Zeolite food supplementation reduces abundance of enterobacteria. Microbiol. Res. 2017, 195, 24-30.
  • Rinttilä T., Apajalahti J.: Intestinal microbiota and metabolites – Implications for broiler chicken health and performance. J. Appl. Poultry Res. 2013, 22, 647-658.
  • Saengkerdsub S., Anderson R. C., Wilkinson H. H., Kim W. K., Nisbet D. J., Ricke S. C.: Identification and quantification of methanogenic archaea in adult chicken ceca. Appl. Environ. Microb. 2007, 73, 353-356.
  • Schokker D., Jansman A. J. M., Veninga G., de Bruin N., Vastenhouw S. A., de Bree F. M., Bossers A., Rebel J. M. J., Smits M. A.: Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genomics 2017, 18, 241.
  • Sergeant M. J., Constantinidou Ch., Cogan T. A., Bedford M. R., Penn Ch. W., Pallen M. J.: Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE 2014, 9, e91941.
  • Shakouri M. D., Lji P. A., Mikkelsen L. L., Cowieson A. J.: Intestinal function and gut microbiota of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. Animal Physiol. Animal Nutr. 2009, 93, 647-658.
  • Shojadoost B., Vinceand A. R., Prescott J. F.: The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens a critical review. Vet. Res. 2012, 43, 74.
  • Simon O., Männer K., Schäfer K., Sagredos A., Eder K.: Effects of conjugated linoleic acids on protein to fat proportions, fatty acids, and plasma lipids in broilers. Eur. J. Lip. Sci. Technol. 2000, 102, 402-410.
  • Siragusa G. R., Wise M. G.: Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J. Appl. Microbiol. 2007, 102, 1138-1149.
  • Stams A. J. M.: Metabolic interaction between anaerobic-bacteria in methanogenic environments. Anton Leeuw. Int. J. G. 1994, 66, 271-294.
  • Stecher B., Robbiani R., Walker A. W., Westendorf A. M., Barthel M., Kremer M., Chaffron S., Macpherson A. J., Buer J., Parkhill J., Dougan G., von Mering C., Hardt W. D.: Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PloS Biol. 2007, 5, 2177-2189.
  • Sunkara L. T., Achanta M., Schreiber N. B., Bommineni Y. R., Dai G., Jiang W., Lamont S., Lillehoj H. S., Beker A., Teeter R. G., Zhang G.: Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS ONE 2011, 6, e27225.
  • Vignais P. M., Billoud B.: Occurrence, classification, and biological function of hydrogenases: An overview. Chem. Rev. 2007, 107, 4206-4272.
  • Vispo C., Karasov W. H.: The interaction of avian gut microbes and their host: An elusive symbiosis, [w:] Mackie R. I., White B. A. (red.): Gastrointestinal Microbiology. Springer US, t. 1, Nowy York 1997, s. 116-155.
  • Wei S., Morrison M., Yu Z.: Bacterial census of poultry intestinal microbiome. Poultry Sci. 2013, 92, 671-683.
  • Wielen van Der P. W., Biesterveld S., Notermans S., Hofstra H., Urlings B. A., van Knapen F.: Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ Microbiol. 2000, 66, 2536-2540.
  • Yeoman C. J., Chia N., Jeraldo P., Sipos M., Goldenfeld N. D., White B. A.: The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews 2012, 13, 89-99.
  • Zduńczyk Z., Jankowski J., Rutkowski A., Sosnowska E., Drazbo A., Zduńczyk P., Juśkiewicz J.: The composition and enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Anim. Feed Sci. Tech. 2014, 191, 57-66.
  • Zhao L., Wong G., Siegel P., He Ch., Wang H., Zhao W., Zhai Z., Tian F., Zhao J., Zhang H., Sun Z., Chen W., Zhang Y., Meng H.: Quantitative Genetic Background of the host influences gut microbiomes in chickens. Sci. Rep. 2013, 3, 1163.
  • Zhou J. S., Gopal P. K., Gill H. S.: Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Inter. J. Food Microbiol. 2001, 63, 81-90.
  • Zhou W., Wang Y., Lin J.: Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl. Envir. Microbiol. 2012, 78, 3028-3032.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bef06cbb-7318-4ff5-af9c-626ba32b724e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.