PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 11 |

Tytuł artykułu

Hodowla lasu wobec zmian klimatycznych – wyzwania, ograniczenia, perspektywa

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Silviculture and climate change – challenges, limitations and perspective

Języki publikacji

PL

Abstrakty

EN
Changing environmental conditions that result from changes in the Earth’s climate system have a multifaceted impact on both forest ecosystems and forestry. Taking into account the causes of the observed climate changes, they will also influence the silvicultural practices in order to realize the future goals of forest management. The significance of this impact is due to the fact that the growth and development of forests as well as its ability to resist the biotic and abiotic threats largely depends on silvicultural operations that are conducted in a given forest stand. The adopted silviculture procedures determine at the same time the achievement of the intended goals of modern ultifunctional forest management. Throughout history, forestry and silviculture faced various challenges resulting from the changing environment, however, the currently observed variation in the environment has no equivalent in the past. Therefore, there is a need to recognize the threats to forest ecosystems resulting from these changes and to develop adaptive measures in relation to present and future forests so as to maintain their continuity of existence and ensure the sustainability of the forest use under the different scenarios of climate change. However, the uncertainty associated with both the pace and the magnitude of changes, as well as with the potential response of forest ecosystems to these changes, highlights the difficulties in developing an optimal strategy for adaptive management of forest ecosystems. To achieve the goals of multifunctional forestry in the future, the forest practitioners will have to take into account both a risk and an uncertainty in adaptive forest management. Despite the fact that there has been no single procedure elaborated so far, it is possible to indicate the principles of adaptive silviculture that allow achieving the objectives of forest management in the future. To some extent, these principles are implemented by the concept of close−to−nature silviculture.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

11

Opis fizyczny

s.881-895,rys.,tab.,bibliogr.

Twórcy

autor
  • Katedra Hodowli Lasu, Uniwersytet Przyrodniczy w Poznaniu, ul. Wojska Polskiego 71a, 60-625 Poznań

Bibliografia

  • Aitken S. N., Yeaman S., Holliday J. A., Wang T., McLane S. C. 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1: 95-111. DOI: https://doi.org/10.1111/j.1752-4571.2007.00013.x.
  • Alexander J. M., Diez J. M., Hart S. P., Levine J. M. 2016. When Climate Reshuffles Competitors: A Call for Experimental Macroecology. Trends Ecol. Evol. 31: 831-841. DOI: https://doi.org/10.1016/j.tree.2016.08.003.
  • Bauhus J., Puettmann K. J., Kuhne C. 2013. Managing forests as complex adaptive systems: Building resilience to the challenge of global change. DOI: https://doi.org/10.4324/9780203122808.
  • Bernadzki E. 1995. Gospodarka leśna w obliczu zmian klimatu. Sylwan 139 (1): 19-32.
  • Bernadzki E. 1997. Cele hodowli lasu wczoraj i dziś. Sylwan 141 (4): 23-31.
  • Bernadzki E. 2000. Półnaturalna hodowla lasu. Biblioteczka Leśniczego 129. Wyd. Świat, Warszawa.
  • Bolibok L., Dobrowolska D., Mionskowski M. 2016. Potencjalny zasięg klimatyczny jodły (Abies alba Mill.) w Polsce. Sylwan 160 (6): 519-528. DOI: https://doi.org/10.26202/sylwan.2016007.
  • Bolte A., Ammer C., Löf M., Madsen P., Nabuurs G. J., Schall P., Spathelf P., Rock J. 2009. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 24: 473-482. DOI: https://doi.org/10.1080/02827580903418224.
  • Bonan G. B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320 (5882): 1444-1449. DOI: https://doi.org/10.1126/science.1155121.
  • Bormann B. T., Haynes R. W., Martin J. R. 2007. Adaptive Management of Forest Ecosystems: Did Some Rubber Hit the Road? Bioscience 57: 186-191. DOI: https://doi.org/10.1641/b570213.
  • Bowditch E., Santopuoli G., Binder F., del Río M., La Porta N., Kluvankova T., Lesinski J., Motta R., Pach M., Panzacchi P., Pretzsch H., Temperli C., Tonon G., Smith M., Velikova V., Weatherall A., Tognetti R. 2020. What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst. Serv. 43: 101113. DOI: https://doi.org/10.1016/j.ecoser.2020.101113.
  • Brang P., Spathelf P., Larsen J. B., Bauhus J., Bončína A., Chauvin C., Drössler L., García-Güemes C., Heiri C., Kerr G., Lexer M. J., Mason B., Mohren F., Mühlethaler U., Nocentini S., Svoboda M. 2014. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87: 492-503. DOI: https://doi.org/10.1093/forestry/cpu018.
  • Brzeziecki B. 1994. Rola matematycznego modelowania w prognozowaniu wpływu potencjalnych zmian klimatu na ekosystemy leśne. Sylwan 138 (10): 5-21.
  • Brzeziecki B. 2007. Zmiany klimatu, węgiel i lasy. Postępy Techniki w Leśnictwie 98: 21-29.
  • Brzeziecki B. 2008. Podejście ekosystemowe i półnaturalna hodowla lasu (w kontekście zasady wielofunkcyjnej lasu). Studia i Materiały CEPL 19: 41-54.
  • Brzeziecki B. 2014. Wpływ sposobów zagospodarowania (odnowienia, pielęgnacji, użytkowania) na bilans węgla w lasach, potencjał sekwestracji i gromadzenia węgla. W: Rykowski K. [red.]. Lasy i drewno a zmiany klimatyczne: zagrożenia i szanse. Sękocin Stary, IBL.
  • Brzeziecki B. 2016. Podstawy kształtowania składu gatunkowego drzewostanów w lasach zagospodarowanych. W: Gil W. [red.]. Zagrożenia lasu oraz jego funkcji – przyczyny, konsekwencje i szanse dla gospodarki leśnej. VIII Sesja Zimowej Szkoły Leśnej przy Instytucie Badawczym Leśnictwa. Sękocin Stary. 15-17 marca 2016 r. 335-356.
  • Brzeziecki B., Drozdowski S., Bielak K., Buraczyk W., Gawron L. 2013. Kształtowanie zróżnicowanej struktury drzewostanów w warunkach nizinnych. Sylwan 157 (8): 597-606. DOI: https://doi.org/10.26202/sylwan.2013051.
  • Bussotti F., Pollastrini M., Holland V., Brüggemann W. 2015. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 111: 91-113. DOI: https://doi.org/10.1016/j.envexpbot.2014.11.006.
  • Cavin L., Mountford E. P., Peterken G. F., Jump A. S. 2013. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct. Ecol. 27: 1424-1435. DOI: https://doi.org/10.1111/1365-2435.12126.
  • Chmura D., Anderson P. D., Howe T., Harrington C. A., Halofsky J. E., Peterson D. L., Shaw D. C., Clair B. S. 2011. Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. For. Ecol. Manage. 261: 1121-1142.
  • Chmura D., Howe G. T., Anderson P. D., Clair B. S. 2010. Przystosowanie drzew, lasów i leśnictwa do zmian klimatycznych. Sylwan 154 (9): 587-602. DOI: https://doi.org/10.26202/sylwan.2010033.
  • D’Amato A. W., Bradford J. B., Fraver S., Palik B. J. 2011. Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For. Ecol. Manage. 262: 803-816. DOI: https://doi.org/10.1016/j.foreco.2011.05.014.
  • Diaci J. 2006. Nature-based forestry in Central Europe. Alternatives to industrial forestry and strict preservation. University of Ljubljana, Ljubljana.
  • Dmyterko E., Bruchwald A., Mionskowski M., Brzeziecki B. 2020. Model składu gatunkowego drzewostanu dla lasów w Sudetach z uwzględnieniem zmian klimatycznych. Sylwan 164 (6): 454-466. DOI: https://doi.org/10.26202/sylwan.2020067.
  • Drever C. R., Peterson G., Messier C., Bergeron E., Flannigan M. 2006. Can forest management based on natural disturbances maintain ecological resilience? Can. J. For. Res. 36: 2285-2299. DOI: https://doi.org/10.1139/X06-132.
  • Drozdowski S. 2018. Rębnia stopniowa. Biblioteczka Leśniczego 391. Wyd. Świat, Warszawa.
  • Dyderski M. K., Paź S., Frelich L. E., Jagodziński A. M. 2018. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 24: 1150-1163. DOI: https://doi.org/10.1111/gcb.13925.
  • Fady B., Cottrell J., Ackzell L., Alía R., Muys B., Prada A., González-Martínez S. C. 2016. Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg. Environ. Chang. 16: 927-939. DOI: https://doi.org/10.1007/s10113-015-0843-9.
  • Fernández-de-Uńa L., Cańellas I., Gea-Izquierdo G. 2015. Stand competition determines how different tree species will cope with a warming climate. PLoS One 10. DOI: https://doi.org/10.1371/journal.pone.0122255.
  • Ford K. R., Breckheimer I. K., Franklin J. F., Freund J. A., Kroiss S. J., Larson A. J., Theobald E. J., HilleRisLambers J. 2017. Competition alters tree growth responses to climate at individual and stand scales. Can. J. For. Res. 47: 53-62. DOI: https://doi.org/10.1139/cjfr-2016-0188.
  • Gömöry D., Krajmerová D., Hrivnák M., Longauer R. 2020. Assisted migration vs. close-to-nature forestry: what are the prospects for tree populations under climate change? Cent. Eur. For. J. 66: 63-70. DOI: https://doi.org/10.2478/forj-2020-0008.
  • González-Martínez S. C., Krutovsky K. V., Neale D. B. 2006. Forest-tree population genomics and adaptive evolution. New Phytol. 170: 227-238. DOI: https://doi.org/10.1111/j.1469-8137.2006.01686.x.
  • Graham R. L., Turner M. G., Dale V. H. 1990. How increasing CO2 and climate change affect forests: at many spatial and temporal scales, there will be forest responses that will be affected by human activities. Bioscience 40: 575-587. DOI: https://doi.org/10.2307/1311298.
  • Hanewinkel M., Cullmann D. A., Schelhaas M. J., Nabuurs G. J., Zimmermann N. E. 2013. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3: 203-207. DOI: https://doi.org/10.1038/nclimate1687.
  • Hättenschwiler S., Miglietta F., Raschi A., Körner C. 1997. Thirty years of in situ tree growth under elevated CO2: A model for future forest responses? Glob. Chang. Biol. 3: 463-471. DOI: https://doi.org/10.1046/j.1365-2486.1997.00105.x.
  • Jandl R., Spathelf P., Bolte A., Prescott C. E. 2019. Forest adaptation to climate change – is non-management an option? Ann. For. Sci. 76: 1-13. DOI: https://doi.org/10.1007/s13595-019-0827-x.
  • Kacprzak P. 2007. Koncepcja cięć pielęgnacyjnych o charakterze przekształceniowym. Biblioteczka Leśniczego 248. Wyd. Świat, Warszawa.
  • Kowalski M. 1991. Climate-a changing component of forest site. Fol. Forest. Pol. A 33: 25-34.
  • Keenan R. J. 2015. Climate change impacts and adaptation in forest management: a review. Ann. For. Sci. 72: 145-167. DOI: https://doi.org/10.1007/s13595-014-0446-5.
  • Kellomäki S., Peltola H., Nuutinen T., Korhonen K. T., Strandman H. 2008. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos. Trans. R. Soc. B Biol. Sci. 363: 2341-2351. DOI: https://doi.org/10.1098/rstb.2007.2204.
  • Lawler J. J. 2009. Climate change adaptation strategies for resource management and conservation planning. Ann. N. Y. Acad. Sci. 1162: 79-98. DOI: https://doi.org/10.1111/j.1749-6632.2009.04147.x.
  • Liang J., Crowther T. W., Picard N., Wiser S., Zhou M., Alberti G., Schulze E. D., McGuire A. D., Bozzato F., Pretzsch H., De-Miguel S., Paquette A., Hérault B., Scherer-Lorenzen M., Barrett C. B., Glick H. B., Hengeveld G. M., Nabuurs G. J., Pfautsch S., Viana H., Vibrans A. C., Ammer C., Schall P., Verbyla D., Tchebakova N., Fischer M., Watson J. V., Chen H. Y. H., Lei X., Schelhaas M. J., Lu H., Gianelle D., Parfenova E. I., Salas C., Lee E., Lee B., Kim H. S., Bruelheide H., Coomes D. A., Piotto D., Sunderland T., Schmid B., Gourlet-Fleury S., Sonké B., Tavani R., Zhu J., Brandl S., Vayreda J., Kitahara F., Searle E. B., Neldner V. J., Ngugi M. R., Baraloto C., Frizzera L., Bałazy R., Oleksyn J., Zawiła-Niedźwiecki T., Bouriaud O., Bussotti F., Finér L., Jaroszewicz B., Jucker T., Valladares F., Jagodzinski A. M., Peri P. L., Gonmadje C., Marthy W., O’Brien T., Martin E. H., Marshall A. R., Rovero F., Bitariho R., Niklaus P. A., Alvarez-Loayza P., Chamuya N., Valencia R., Mortier F., Wortel V., Engone-Obiang N. L., Ferreira L. V., Odeke D. E., Vasquez R. M., Lewis S. L., Reich P. B. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354 (6309). DOI: https://doi.org/10.1126/science.aaf8957.
  • Lindner M., Fitzgerald J. B., Zimmermann N. E., Reyer C., Delzon S., van der Maaten E., Schelhaas M. J., Lasch P., Eggers J., van der Maaten-Theunissen M., Suckow F., Psomas A., Poulter B., Hanewinkel M. 2014. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manage. 146: 69-83. DOI: https://doi.org/10.1016/j.jenvman.2014.07.030.
  • Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M. J., Marchetti M. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259: 698-709. DOI: https://doi.org/10.1016/j.foreco.2009.09.023.
  • Messier C., Puettmann K., Chazdon R., Andersson K. P., Angers V. A., Brotons L., Filotas E., Tittler R., Parrott L., Levin S. A. 2015. From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain World. Conserv. Lett. 8: 368-377. DOI: https://doi.org/10.1111/conl.12156.
  • Millar C. I., Stephenson N. L., Stephens S. L. 2007. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 17: 2145-2151. DOI: https://doi.org/10.1890/06-1715.1.
  • Morin X., Fahse L., Jactel H., Scherer-Lorenzen M., García-Valdés R., Bugmann H. 2018. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8: 1-12. DOI: https://doi.org/10.1038/s41598-018-23763-y.
  • Nagel L. M., Palik B. J., Battaglia M. A., D’Amato A. W., Guldin J. M., Swanston C. W., Janowiak M. K., Powers M. P., Joyce L. A., Millar C. I., Peterson D. L., Ganio L. M., Kirschbaum C., Roske M. R. 2017. Adaptive Silviculture for Climate Change: A National Experiment in Manager-Scientist Partnerships to Apply an Adaptation Framework. J. For. 115: 167-178. DOI: https://doi.org/10.5849/jof.16-039.
  • Nocentini S., Buttoud G., Ciancio O., Corona P. 2017. Managing forests in a changing world: The need for a systemic approach. A review. For. Syst. 26: 1-15. DOI: https://doi.org/10.5424/fs/2017261-09443.
  • Nock C. A., Vogt R. J., Beisner B. E. 2016. Functional Traits. eLS 1-8. DOI: https://doi.org/10.1002/9780470015902.a0026282.
  • O’Hara K. 2014. Multiaged silviculture. Managing for complex forest stand structures. Oxford University Press, Oxford, United Kingdom.
  • O’Hara K. L. 2016. What is close-to-nature silviculture in a changing world? Forestry 89: 1-6. DOI: https://doi.org/10.1093/forestry/cpv043.
  • O’Hara K. L., Ramage B. S. 2013. Silviculture in an uncertain world: Utilizing multi-aged management systems to integrate disturbance. Forestry 86: 401-410. DOI: https://doi.org/10.1093/forestry/cpt012.
  • Park A., Puettmann K., Wilson E., Messier C., Kames S., Dhar A. 2014. Can Boreal and Temperate Forest Management be Adapted to the Uncertainties of 21st Century Climate Change? CRC. Crit. Rev. Plant Sci. 33: 251-285. DOI: https://doi.org/10.1080/07352689.2014.858956.
  • Pommerening A., Murphy S. T. 2004. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77: 27-44. DOI: https://doi.org/10.1093/forestry/77.1.27.
  • Puettmann K., Coates K. D., Messier C. 2009. A critique of silviculture. Managing for complexity. Island Press, Washington – Covelo – London.
  • Puettmann K. J. 2011. Silvicultural challenges and options in the context of global change: ‘simple’ fixes and opportunities for new management approaches. J. For. 31: 855-856. DOI: https://doi.org/10.3928/01477447-20080901-33.
  • Puettmann K. J., Wilson S. M. G., Baker S. C. 2015. Silvicultural alternatives to conventional even-aged forest management – What limits global adoption? For. Ecosyst. 2: 8. DOI: https://doi.org/10.1186/s40663-015-0031-x.
  • Reyer C., Lasch-Born P., Suckow F., Gutsch M., Murawski A., Pilz T. 2014. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71: 211-225. DOI: https://doi.org/10.1007/s13595-013-0306-8.
  • Reyer C., Leuzinger S., Rammig A., Wolf A. 2013. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Chang. Biol. 19: 75-89. DOI: https://doi.org/10.1111/gcb.12023.
  • Rykowski K. 2006. O wpływie zmian klimatycznych na lasy i leśnictwo. Biblioteczka Leśniczego 244. Wyd. Świat, Warszawa.
  • Schelhaas M. J., Nabuurs G. J., Hengeveld G., Reyer C., Hanewinkel M., Zimmermann N. E., Cullmann D. 2015. Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg. Environ. Chang. 15: 1581-1594. DOI: https://doi.org/10.1007/s10113-015-0788-z.
  • Seastedt T. R., Hobbs R. J., Suding K. N. 2008. Management of novel ecosystems: Are novel approaches required? Front. Ecol. Environ. 6: 547-553. DOI: https://doi.org/10.1890/070046.
  • Sedjo R., Sohngen B. 2012. Carbon sequestration in forests and soils. Annu. Rev. Resour. Econ. 4: 127-153.
  • Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., Vacchiano G., Wild J., Ascoli D., Petr M., Honkaniemi J., Lexer M. J., Trotsiuk V., Mairota P., Svoboda M., Fabrika M., Nagel T. A., O Reyer C. P. 2017. Forest disturbances under climate change. Nat. Clim. Chang. 7: 395-402. DOI: https://doi.org/10.1038/nclimate3303.
  • Sohn J. A., Gebhardt T., Ammer C., Bauhus J., Häberle K. H., Matyssek R., Grams T. E. E. 2013. Mitigation of drought by thinning: Short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). For. Ecol. Manage. 308: 188-197. DOI: https://doi.org/10.1016/j.foreco.2013.07.048.
  • Soudzilovskaia N. A., Elumeeva T. G., Onipchenko V. G., Shidakov I. I., Salpagarova F. S., Khubiev A. B., Tekeev D. K., Cornelissen J. H. C. 2013. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc. Natl. Acad. Sci. U.S.A. 110: 18180-18184. DOI: https://doi.org/10.1073/pnas.1310700110.
  • Spathelf P., Bolte A., van der Maaten E. 2015. Is close-to-nature silviculture (CNS) an adequate concept to adapt forests to climate change? Appl. Agric. Forestry Res. 65: 161-170.
  • Spathelf P., van der Maaten E., van der Maaten-Theunissen M., Campioli M., Dobrowolska D. 2014. Climate change impacts in European forests: The expert views of local observers. Ann. For. Sci. 71: 131-137. DOI: https://doi.org/10.1007/s13595-013-0280-1.
  • Spiecker H. 2003. Silvicultural management in maintaining biodiversity and resistance of forests in Europe – Temperate zone. J. Environ. Manage. 67: 55-65. DOI: https://doi.org/10.1016/S0301-4797(02)00188-3.
  • Szwagrzyk J. 2013. Prawdopodobne zmiany zasięgów występowania gatunków drzewiastych – konsekwencje dla hodowli lasu. W: Rykowski K. [red.]. Lasy i drewno a zmiany klimatyczne: zagrożenia i szanse. Sękocin Stary, IBL.
  • Temperli C., Bugmann H., Elkin C. 2012. Adaptive management for competing forest goods and services under climate change. Ecol. Appl. 22: 2065-2077. DOI: https://doi.org/10.1890/12-0210.1.
  • Thomson A. M., Parker W. H. 2008. Boreal forest provenace tests used to predict optimal growth and response to climate change. 1. Jack pine. Can. J. For. Res. 38: 157-170.
  • Ustawa z dnia 28 września 1991 r. o lasach. 1991. Dz. U. Nr 101, poz. 444.
  • Vacek Z., Prokůpková A., Vacek S., Cukor J., Bílek L., Gallo J., Bulušek D. 2020. Silviculture as a tool to support stability and diversity of forests under climate change?: study from Krkonoše Mountains. Cent. Eur. For. J. 66: 116-129. DOI: https://doi.org/10.2478/forj-2020-0009.
  • Woodall C. W., Oswalt C. M., Westfall J. A., Perry C. H., Nelson M. D., Finley A. O. 2010. Selecting tree species for testing climate change migration hypotheses using forest inventory data. For. Ecol. Manage. 259: 778-785. DOI: https://doi.org/10.1016/j.foreco.2009.07.022.
  • Yachi S., Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96: 1463-1468. DOI: https://doi.org/10.1073/pnas.96.4.1463.
  • Zajączkowski J., Brzeziecki B., Perzanowski K., Kozak I. 2013. Wpływ potencjalnych zmian klimatycznych na zdolność konkurencyjną głównych gatunków drzew w Polsce. Sylwan 157 (4): 253-261. DOI: https://doi.org/10.26202/sylwan.2012134.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-be7c02bc-0d12-49c2-a432-db8fd7d7bd58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.