PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 51 | 2 |

Tytuł artykułu

Chemical compounds of extracts from Sarcodon imbricatus at optimized growth conditions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of carbon and nitrogen sources and initial pH and temperature of the medium on the mycelial growth of Sarcodon imbricatus (L.) P. Karst. in axenic liquid culture was investigated. The optimal composition of the medium was found to be: 5% fructose, 1% hydrolysate of casein, 1% yeast extract, and 0.3% KH2PO4 at pH = 6 and incubation temperature of 20°C. In this condition the maximum biomass growth was observed, yielding 10.2 g L−1 of dry weight after 3-week of growth. The medium regarded as optimal for growth of S. imbricatus mycelium was used for the production of the biomass and further chemical analysis. The quantitative and qualitative composition of phenolic acids, fatty acids, and sterols were determined using chromatographic methods. The total content of phenolic acids was 1.86 mg × 100 g−1 DW, with the largest amount of protocatechuic acid (1.27 mg × 100 g−1 DW). Nineteen fatty acids were estimated, including five unsaturated fatty acids, e.g., oleic and α-linolenic acid. The analysis of sterols composition revealed the presence of ergosterol and ergosterol peroxide (197.7 and 200.47 mg × 100 g−1 DW, respectively). These compounds were isolated and confirmed by 1H-NMR. Presented study constitutes the first report on the accumulation of substances (phenolic acids, fatty acids, and sterols) with multidirectional biological activity in the mycelial axenic culture of Sarcodon imbricatus.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

51

Numer

2

Opis fizyczny

Article 1086 [11p.], fig.,ref.

Twórcy

  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
autor
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
  • Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
autor
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
  • Faculty of Health and Medical Science, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705 Krakow, Poland
autor
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland

Bibliografia

  • 1. Yuan B, Chi X, Zhang R. Optimization of exopolysaccharides production from a novel strain of Ganoderma lucidum CAU5501 in submerged culture. Brazilian Journal of Microbiology. 2012;43(2):490–497. http://dx.doi.org/10.1590/S1517-83822012000200009
  • 2. Zárate-Chaves CA, Romero-Rodríguez MC, Niño-Arias FC, Robles-Camargo J, Linares-Linares M, Rodríguez-Bocanegra MX, et al. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum. Brazilian Journal of Microbiology. 2013;44(1):215–223. http://dx.doi.org/10.1590/S1517-83822013005000032
  • 3. Maruyama H, Yamazaki K, Murofushi S, Konda C, Ikekawa T. Antitumor activity of Sarcodon aspratus (Berk.) S. Ito and Ganoderma lucidum (Fr.) Karst. J Pharmacobiodyn. 1989;12(2):118–123.
  • 4. Hirota M, Morimura K, Shibata H. Anti-inflammatory compounds from the bitter mushroom, Sarcodon scabrosus. Biosci Biotechnol Biochem. 2002;66(1):179–184. http://dx.doi.org/10.1271/bbb.66.179
  • 5. Kamo T, Imura Y, Hagio T, Makabe H, Shibata H, Hirota M. Anti-inflammatory cyathane diterpenoids from Sarcodon scabrosus. Biosci Biotechnol Biochem. 2004;68(6):1362–1365. http://dx.doi.org/10.1271/bbb.68.1362
  • 6. Kobori M, Yoshida M, Ohnishi-Kameyama M, Takei T, Shinmoto H. 5alpha,8alpha-Epidioxy-22E-ergosta-6,9(11),22-trien-3beta-ol from an edible mushroom suppresses growth of HL60 leukemia and HT29 colon adenocarcinoma cells. Biol Pharm Bull. 2006;29(4):755–759. http://doi.org/10.1248/bpb.29.755
  • 7. Kobori M, Yoshida M, Ohnishi-Kameyama M, Shinmoto H. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol. 2007;150(2):209–219. http://dx.doi.org/10.1038/sj.bjp.0706972
  • 8. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol. 2015;35(3):355–368. http://dx.doi.org/10.3109/07388551.2014.887649
  • 9. Sułkowska-Ziaja K, Karczewska E, Wojtas I, Budak A, Muszyńska B, Ekiert H. Isolation and biological activities of polysaccharide fractions from mycelium of Sarcodon imbricatus L. P. Karst. (Basidiomycota) cultured in vitro. Acta Pol Pharm. 2011;68(1):143–145.
  • 10. Sułkowska-Ziaja K, Muszyńska B, Ekiert H. Chemical composition and cytotoxic activity of the polysaccharide fractions in Sarcodon imbricatus (Basidiomycota). Acta Mycol. 2013;47(1):49–56. http://dx.doi.org/10.5586/am.2012.006
  • 11. Agerer R. Ectomycorrhizae of Sarcodon imbricatus on Norway spruce and their chlamydospores. Mycorrhiza. 1991;1(1):21–30. http://dx.doi.org/10.1007/BF00205898
  • 12. Orłoś H. Atlas grzybów leśnych. Warszawa: PWRiL; 1967.
  • 13. Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. Evid Based Complement Alternat Med. 2005;2(3):285–299. http://dx.doi.org/10.1093/ecam/neh107
  • 14. Hrouda P. Bankeraceae in Central Europe. 1. Czech Mycol. 2005;57:57–78.
  • 15. Hrouda P. Bankeraceae in Central Europe. 2. Czech. Mycol. 2005;57:3–4.
  • 16. Turło J, Lubiński O, Gutkowska B. Isolation of lentinan, an immunomodulating (1→3)-β-d-glucan from submerged cultivated mycelium of Lentinus edodes and culture medium. Acta Pol Pharm. 2004;61(suppl):40–42.
  • 17. Ellnain-Wojtaszek M, Zgórka G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liq Chromatogr Relat Technol. 1999;22(10):1457–1471. http://dx.doi.org/10.1081/JLC-100101744
  • 18. Yuan JP, Kuang HC, Wang JH, Liu X. Evaluation of ergosterol and its esters in the pileus, gill, and stipe tissues of agaric fungi and their relative changes in the comminuted fungal tissues. Appl Microbiol Biotechnol. 2008;80(3):459–465. http://dx.doi.org/10.1007/s00253-008-1589-9
  • 19. Joo JH, Lim JM, Kim HO, Kim SW, Hwang HJ, Choi JW, et al. Optimization of submerged culture conditions for exopolysaccharide production in Sarcodon aspratus (Berk) S. lto TG-3. World J Microbiol Biotechnol. 2004;20(7):767–773. http://dx.doi.org/10.1007/s11274-004-5841-x
  • 20. Xiao JH, Chen DX, Liu JW, Liu ZL, Wan WH, Fang N, et al. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. J Appl Microbiol. 2004;96(5):1105–1116. http://dx.doi.org/10.1111/j.1365-2672.2004.02235.x
  • 21. Newcomb HR, Jennison MW. Physiology of wood-rotting basidiomycetes. IV. Respiration of non-proliferating cells of Polyporus palustris. Can J Microbiol. 1962;8:145–156.
  • 22. Kues U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54(2):141–152. http://dx.doi.org/10.1007/s002530000396
  • 23. Sokół S, Golak-Siwulska I, Sobieralski K, Siwulski M, Górka K. Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceum. Acta Mycol. 2015;50(2):1069. http://dx.doi.org/10.5586/am.1069
  • 24. Park JP, Kim SW, Hwang HJ, Yun JW. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol. 2001;33(1):76–81.
  • 25. Jennison MW, Newcomb MD, Henderson R. Physiology of the wood-rotting Basidiomycetes. I. Growth and nutrition in submerged culture in synthetic media. Mycologia. 1955;47(3):275–304. http://dx.doi.org/10.2307/3755451
  • 26. Cho EJ, Oh JY, Chang HY, Yun JW. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol. 2006;127(1):129–140. http://dx.doi.org/10.1016/j.jbiotec.2006.06.013
  • 27. Muszyńska B, Sułkowska-Ziaja K, Ekiert H. Indole compounds in fruiting bodies of some selected Macromycetes species and in their mycelia cultured in vitro. Pharmazie. 2009;64(7):479–480.
  • 28. Kalyoncu F, Oskay M, Kayalar H. Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology. 2010;1(3):195–199. http://dx.doi.org/10.1080/21501203.2010.511292
  • 29. Ferreira ICFR, Barros L, Abreu RMV. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543–1560. http://dx.doi.org/10.2174/092986709787909587
  • 30. Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R. Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem. 2006;54(26):9764–9772. http://dx.doi.org/10.1021/jf0615707
  • 31. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem. 2008;56(16):7265–7270. http://dx.doi.org/10.1021/jf8008553
  • 32. Barros L, Duenas M, Ferreira ICFR, Baptista P, Santos-Buelga C. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol. 2009;47(6):1076–1079. http://dx.doi.org/10.1016/j.fct.2009.01.039
  • 33. Pan A, Chen M, Chowdhury R, Sun Q, Campos H, Mozaffarian D, et al. α-Linolenic acid and risk of cardiovascular disease: a systematic. Am J Clin Nutr. 2012;96(6):1262–1273. http://dx.doi.org/10.3945/ajcn.112.044040
  • 34. Brondz I, Høiland K, Ekeberg D. Multivariate analysis of fatty acids in spores of higher basidiomycetes: a new method for chemotaxonomical classification of fungi. Journal of Chromatography B. 2004;800(1–2):303–307. http://dx.doi.org/10.1016/j.jchromb.2003.07.003
  • 35. Guillamón E, García-Lafuente A, Lozano M, D'arrigo M, Rostagno MA, Villares A, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715–723. http://dx.doi.org/10.1016/j.fitote.2010.06.005
  • 36. Hanus LO, Shkrob I, Dembitski VM. Lipids and fatty acids of wild edible mushrooms of the genus Boletus. J Food Lipids. 2008;15(8):370–383. http://dx.doi.org/10.1111/j.1745-4522.2008.00125.x
  • 37. Manzi P, Aguzzi A, Pizzoferrato L. Nutritional value of mushrooms widely consumed in Italy. Food Chem. 2001;73(3):321–325. http://dx.doi.org/10.1016/S0308-8146(00)00304-6
  • 38. Stadler M, Mayer A, Anke H, Sterner O. Fatty acids and other compounds with nematicidal activity from cultures of Basidiomycetes. Planta Med. 1994;60(2):128–132. http://dx.doi.org/10.1055/s-2006-959433
  • 39. Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 2007;105(1):140–145. http://dx.doi.org/10.1016/j.foodchem.2007.03.052
  • 40. Trigos A, Ortega-Regules A. Selective destruction of microscopic fungi through photooxidation of ergosterol. Mycologia. 2002;94(4):563–568.
  • 41. Takei T, Yoshida M, Ohnishi-Kameyama M, Kobori M. Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem. 2005;69(1):212–215. http://dx.doi.org/10.1271/bbb.69.212
  • 42. Brennan PJ, Griffin PFS, Lösel DM, Tyrrell D. The lipids of fungi. Prog Chem Fats Other Lipids. 1975;14:49–89. http://dx.doi.org/10.1016/0079-6832(75)90002-6
  • 43. Jasinghe VJ, Perera CO. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem. 2005;92(3):541–546. http://dx.doi.org/10.1016/j.foodchem.2004.08.022
  • 44. Subbiah MTR, Abplanalp W. Ergosterol (major sterol of baker’s and brewer’s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products. Int J Vitam Nutr Res. 2003;73:19–23. http://dx.doi.org/10.1024/0300-9831.73.1.19
  • 45. Zaidman B-Z, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol. 2005;67(4):453–468. http://dx.doi.org/10.1007/s00253-004-1787-z
  • 46. Weete JD, Abril M, Blackwell M. Phylogenetic distribution of fungal sterols. PLoS One. 2010;5(5):10899. http://dx.doi.org/10.1371/journal.pone.0010899

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-be6cafe3-01e5-41b8-89bb-63ac38a918d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.