PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 16 | 2 |

Tytuł artykułu

Alternate bearing affects nutritional status and net assimilation rate of an irrigated olive grove under arid conditions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Alternate bearing is a typical behavior of various fruit tree crops and is common among olive cultivars (Olea europæa L. var. sativa Hoffm. e Lk.). Since this phenomenon affects yield and consequently oil production, it is a concern for olive oil industry in order to offer a constant olive oil amount each year. A 4-year field experiment was conducted on cv Chemlali olive trees in ‘on’ and ‘off’ years in order to study, under arid conditions, both annual macro-element balance and net photosynthetic activity. Shoots growth was much higher in the ‘off’ year with respect to the ‘on’ one (+11.70 cm vs. +2.60). Net photosynthesis rate was much higher in the ‘off’ year with respect to the ‘on’ year and the highest values were observed at spring, when there is an intense vegetative growth. Differences for the mineral elements were observed between the ‘on’ and ‘off’ years. Nitrogen accumulated in leaves mainly in spring in the ‘off’ year, whereas high N values were detected also at the end of summer in the ‘on’ year. Consequently, N fertilization can be accomplished in February–March and possibly after harvest (November–December) to be used at budburst in the successive season. A difference was found between leaf P concentrations in ‘on’ or ‘off’ years from flowering to fruit-set, with the lowest values in the ‘on’ year, in particular in June–July. A supply of P at autumn–winter and partially in spring–summer in particular in an ‘on’ year would be appropriate. K accumulated in leaves in ‘on’ year from spring to summer, thus a supply of K in January–February, before new vegetation, for trees either in ‘on’ or ‘off’ year can be necessary for supporting and implementing the root system activity and the successive shoot growth (‘off’ year) and fruit development (‘on’ year). These results should be useful to partially reduce, through an appropriate fertilization schedule, the alternate bearing in olive tree.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.95-106,fig.,ref.

Twórcy

autor
  • Laboratory of Environment and Biology of Arid Area, Department of Life Science, Faculty of Sciences, P.O. Box 802, 3018 Sfax, Tunisia
autor
  • Laboratory of Improvement of Olive and Fruit Trees Productivity, Olive Tree Institute, P.O. Box 1087, 3000 Sfax, Tunisia
autor
  • Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, via Amendola 165/A, 70126 Bari, Italy
  • Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, via Amendola 165/A, 70126 Bari, Italy
autor
  • Department of Soil, Plant and Food Science, University of Bari ‘Aldo Moro’, via Amendola 165/A, 70126 Bari, Italy
  • Department of Soil, Plant and Food Science, University of Bari ‘Aldo Moro’, via Amendola 165/A, 70126 Bari, Italy
autor
  • Department of Soil, Plant and Food Science, University of Bari ‘Aldo Moro’, via Amendola 165/A, 70126 Bari, Italy

Bibliografia

  • Bedbabis, S., Ferrara, G., Ben Rouina, B., Boukhris, M. (2010). Effects of irrigation with treated wastewater on olive tree growth, yield and leaf mineral elements at short term. Sci. Hort., 126, 345–350.
  • Bedbabis, S., Ben Rouina, B., Boukhris, M., Ferrara, G. (2014 a). Effects of irrigation with treated wastewater on root and fruit mineral elements of Chemlali olive cultivar. Sci. World J., 973638. doi: 10.1155/2014/973638
  • Bedbabis, S., Ben Rouina, B., Boukhris, M., Ferrara, G. (2014 b). Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate. J. Environ. Manage., 133, 45–50.
  • Bedbabis, S., Trigui, D., Ben Ahmed, C., Clodoveo, M.L., Camposeo, S., Vivaldi, G.A., Ben Rouina, B. (2015). Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality. Agric. Water Manage., 160, 14–21.
  • Bedbabis, S., Ben Rouina, B., Clodoveo, M.L., Ferrara, G. (2016). ‘Chemlali’ olive trees in an irrigated grove: effects of tree age on virgin olive oil quality and mineral nutrient distribution in roots, leaves and fruits. Fruits, 71(4), 221–228.
  • Ben Ahmed, C., Magdich, S., Ben Rouina, B., Boukhris, M., Ben Abdullah, F. (2012). Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. J. Environ. Manage., 113, 538–544.
  • Ben Rouina, B., Taamallah, H., Trigui, A. (1999). L’enracinement de l’olivier et ses variations en fonction de la nature du sol en milieu arides. Rev. Rég. Arid., 182–190.
  • Bouat, A. (1964). L’analyse foliaire de l’olivier, Colloque Européen sur le contrôle de la nutrition minérale et de la fertilisation. Montpellier, France, 253–264.
  • Bouaziz, E. (1995). Comportement de quelques variétés d’oliviers irrigués à l’eau saumâtre. Olea, 23, 77.
  • Brahem, M. (1997). Activité écophysiologique, état nutritif et croissance de l’olivier (Olea europaea L.) soumis à une contrainte hydrique. Thèse. Faculté Landbouw-kundige en Toegepaste Biologische Wetenschappen.
  • Brahem, M., Mehri, A. (1997). Etudes des causes du jaunissement des feuilles de l’olivier par la méthode du diagnostic foliaire. IVème Journée de L’IRESA, ‘Acquis de la recherche’, Nabeul, Tunisie, pp. 234–244.
  • Bustan, A., Avni, A., Yermiyahu, U., Ben Gal, A., Riov, J., Erel, R., Zipori, I., Dag, A. (2013). Interactions between fruit load and macro-element concentrations in fertigated olive (Olea europaea L.) trees under arid saline conditions. Sci. Hort., 152, 44–55.
  • Camposeo, S., Godini, A. (2010). Preliminary observations about the performance of 13 varieties according to the super high density oliveculture training system in Apulia (southern Italy). Adv. Hort. Sci., 24, 16–20
  • Camposeo, S., Vivaldi, G.A. (2011). Short-term effects of de-oiled olive pomace mulching application on a young super high-density olive orchard. Sci. Hort., 129, 613–621.
  • Camposeo, S., Vivaldi, G.A., Gattullo, C.E. (2013). Ripening indices and harvesting times of different olive cultivars for continuous harvest. Sci. Hort., 151, 1–10.
  • Caruso, T., Campisi, G., Marra, F.P., Camposeo, S., Vivaldi, G.A., Proietti, P., Nasini, L. (2014). Growth and yields of the cultivar Arbequina in high density planting systems in three different olive growing areas in Italy. Acta Hort., 1057, 341–348.
  • Chartzoulakis, K., Patakos, A., Bosabadilis, A.M. (1999). Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ Exp. Bot., 42, 113–120.
  • Chesworth, J.M., Stuchbury, T., Scaife, J.R. (1998). Agricultural biochemistry. Chapman and Hall, New York.
  • Clodoveo, M.L., Camposeo, S., De Gennaro, B., Pascuzzi, S., Roselli, L. (2014). In the ancient world, virgin olive oil was called “liquid gold” by Homer and “the great healer” by Hippocrates. Why has this mythic image been forgotten? Food Res. Int., 62, 1062–1068.
  • Connor, D.J., Fereres, E. (2005). The physiology of adaptation and yield expression in olives. Hort. Rev., 31, 155–229.
  • Dag, A., Bustan, A., Avni, A., Tzipori, I., Lavee, S., Riov, J. (2010). Timing of fruit removal affects concurrent vegetative growth and subsequent return bloom and yield in olive (Olea europaea L.). Sci Hor., 123, 469–472.
  • Dag, A., Bustan, A., Avni, A., Lavee, S., Riov, J. (2009). Fruit thinning using NAA shows potential for reducing biennial bearing of ‘Barnea’ and ‘Picual’ oil olive trees. Crop Past. Sci., 60, 1124–1130.
  • Erel, R., Dag, A., Ben-Gal, A., Yermiyahu, U., Schwartz, A. (2011). The roles of nitrogen, phosphorus and potassium on olive tree productivity. Acta Hort., 888, 259– 267.
  • Famiani, F., Farinelli, D., Rollo, S., Camposeo, S., Di Vaio, C., Inglese, P. (2014). Evaluation of different mechanical fruit harvesting systems and oil quality in very large size olive trees. Span. J. Agric. Res., 12(4), 960–972.
  • Fernández-Escobar, R., García-Novelo, J.M., Restrepo-Díaz, H. (2011). Mobilization of nitrogen in the olive bearing shoots after foliar application of urea. Sci. Hort., 127, 452–454.
  • Fernández-Escobar, R., Moreno, R., Sanchez-Zamora, M.A. (2004). Nitrogen dynamics in the olive bearing shoot. Hort. Sci., 39, 1406–1411.
  • Fernández-Escobar, R., Moreno, R., Garcia-Creus, M. (1999). Seasonal changes of mineral nutrients in olive leaves during the alternate- bearing cycle. Sci. Hort., 82, 25–45.
  • Fernández-Escobar, R., Parra, M.A, Navarro, C., Arquero, O. (2009). Foliar diagnosis as a guide to olive fertilization. Span. J. Agric. Res., 7(1), 212–223.
  • Ferrara, G., Camposeo, S., Palasciano, M., Godini, A. (2007). Production of total and stainable pollen grains in Olea europaea L. Grana, 46, 85–90.
  • Ferreira, J.A., Mafra, I., Soares, M.R., Evtuguin, D.V., Coimbra, M.A. (2006). Dimeric calcium complexes of arabinan-rich pectic polysaccharides from Olea europaea L. cell walls. Carbohydr. Polym., 65(4), 535–543.
  • Freeman, M., Uriu, K., Hartmann, H.T. (2005). Diagnosing and correcting nutrient problems. In: Olive production manual, Sibbet, G.S., Ferguson, L. (eds). University of California, Agriculture and Natural Resources, Oakland, pp. 83–92.
  • Gargouri, K. (1998). Fertilité des sols et nutrition phosphopotassique de l’olivier (Olea europaea) en Tunisie. Mémoire de Spécialisation. Tunisie.
  • Gee, W.G., Or., D. (2002). Particle-size analysis. In: Methods of soil analysis. Book ser. 5, part 4: Soil science society of America, Dane, J., Topp, G.C. (eds). USA, pp. 255–293.
  • Godini, A., Vivaldi, G.A., Camposeo, S. (2011). Olive cultivars field-tested in super-high-density system in southern Italy. Calif. Agric., 65(1), 39–40.
  • Goldschmidt, E.E. (2005). Regulatory aspects of alternate bearing of fruit trees. Ital. Hort., 12, 11–17.
  • Inglese, P., Gullo, G., Pace, L.S. (2002). Fruit growth and olive quality in relation to foliar nutrition and time of application. Acta Hort., 586, 507–509.
  • Jordao, P.V., Lietao, F. (1990). The olive’s mineral composition and some parameters of quality in fifty olive cultivars grown in Portugal. Acta Hort., 286, 461– 464.
  • Lavee, S. (1997). Biologie et physiologie de l’olivier. Encyclopédie mondiale de l’olivier. C.O.I. (eds), pp. 61–110. Lavee, S. (2006). Biennial bearing in olive (Olea europaea L.). Olea, 25, 5–13.
  • Lynch, J.P., Ho, M.D. (2005). Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil, 269, 45–56.
  • Marschner, H. (1995). Mineral nutrition of higher plants, 2nd ed. Academic Press, London. Mazzeo, A., Palasciano, M., Gallotta, A., Camposeo, S., Pacifico, A., Ferrara, G. (2014). Amount and quality of pollen grains in four olive (Olea europaea L) cultivars as affected by ‘on’ and ‘off’ years. Sci. Hort., 170, 89–93.
  • Mechri, B., Cheheb, H., Boussadia, O., Attia, F., Ben Mariem, F., Braham, M., Hammami, M. (2011). Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environ. Exp. Bot., 71, 184–191.
  • Mili, S. (2006). Olive oil marketing on non-traditional markets: prospects and strategies. New Med., 5, 27–37.
  • Morales-Sillero, A., Rapoport, H., Fernández, J.E., Troncoso, A. (2008). Olive fruit pulp and pit growth under differing nutrient supply. Sci. Hort., 117, 182–184.
  • Moriana, A., Orgaz, F., Pastor, M., Fereres, E. (2003). Yield response of mature olive orchard to water deficits. J. Am. Soc. Hort. Sci., 128, 425–431.
  • Pauwels, J.M., Van Ranst, E., Verloo, M.G., Mvondo, Z.A. (1992). Manuel de laboratoire de pédologie. A.G. Building, Place du Champ demars 5, Bruxelles. Publi. Agricol., 28, 191–208.
  • Pastor, M., Hidalgo, J., Vega, V., Castro, J. (1998). Irrigation de cultures oléicoles dans la région de la Loma (Province de Jaén). Olivae, 71, 39–49.
  • Poli, M. (1979). Etude bibliographique de la physiologie de l’alternance de production chez l’olivier. Fruit, 34, 687–695.
  • Proietti, P., Famiani, F., Tombesi, A. (1999). Gas exchange in olive fruit. Photosynthetica, 36, 423–432.
  • Richards, L.A. (ed.) (1954). Diagnosis and improvement of saline and alkali soils. USDA Agric. Handbook 60, Washington D. C. Rosecrance, R.C., Weinbaum, S.A., Brown, P.H. (1998). Alternate bearing affects nitrogen, phosphorus, potassi um, and starch storage pools in mature pistachio trees. Ann. Bot., 82, 463–470.
  • Segal, E., Dag, A., Ben-Gal, A., Zipori, I., Erel, R., Suryano, S.,Yermiyahu, U. (2011). Olive orchard irrigation with reclaimed wastewater, agronomic and environmental considerations. Agric. Ecosyst. Environ., 140, 454–461.
  • Schachtman, D.P., Reid, R.J., Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol., 116, 447–453.
  • Soing, P. (1999). Fertilisations des vergers: Environnement et qualité. CTIFL Paris, pp. 86. Theoris, I. (2009). Olives. Crop production science in horticulture 18. CAB International, Oxfordshire, UK.
  • Tombesi, A., Proietti, P., Nottiani, G. (1986). Effect of water stress on photosynthesis, transpiration, stomata resistance and carbohydrate level in olive tree. Olea, 17, 35–40.
  • Vance, C.P., Uhde-Stone, C., Allan, D.L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol., 157, 423–447.
  • Vivaldi, G.A., Strippoli, G., Pascuzzi, S., Stellacci, A.M., Camposeo, S. (2015). Olive genotypes cultivated in an adult high-density orchard respond differently to canopy restraining by mechanical and manual pruning. Sci. Hort., 192, 391–399.
  • Vossen, P. (2007). Olive oil: history, production, and characteristics of the world’s classic oils. Hort. Sci., 42, 1093–1100

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-be66778e-09a1-4f2b-93a6-2436e5633b98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.