Ethiopian Environment and Forest Research Institute, Forest Products Development and Innovation Research and Training Center, Addis Ababa, Ethiopia
Bibliografia
[1] Ezeoha, S.L., Anyanwu, C.N. and Nwakaire, J.N. (2017). The prospects, impacts and research challenges of enhanced cellulosic ethanol production: a review. Nigerian Journal of Technology 36 (1): 267-275.
[2] Valentine, J., Clifton-brown, J., Hastings, A., Robson, P., Allison, G. and Mith, P. (2012). Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4: 1-19.
[3] Saini, J.K., Saini, R., and Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5: 337-353.
[4] Branco, R.H.R, Serafim, L.S. and Xavier, A.M.R.B. (2019). Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock: Review. Fermentation 5, 4.
[5] Robak, K. and Balcerek, M. (2018). Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol. Biotechnol. 56 (2): 174-187.
[6] Mishra, S., Singh, P.K., Dash, S. and Pattnaik, R. (2018). Microbial pretreatment of lignocellulosic biomass for enhanced biomethanation and waste management. 3 Biotech. 8: 458.
[7] Trevorah, R.M. and Othman, M.Z. (2015). Alkali pretreatment and enzymatic hydrolysis of Australian timber mill Sawdust for biofuel production. J. Renewable Energy, Article ID 284250, 9 pages.
[8] Safarian, S. and Unnthorsson, R. (2018). An Assessment of the Sustainability of lignocellulosic bioethanol production from wastes in Iceland. Energies 11: 1493.
[9] Amezcua-Allieri, M.A., Durán, T.S. and Aburto, J. (2017). Study of Chemical and Enzymatic Hydrolysis of Cellulosic Material to Obtain Fermentable Sugars. Journal of Chemistry, Article ID 5680105.
[10] Ibrahim, M.M., El-Zawawy, W.K., Abdel-Fattah, Y.R., Soliman, N.A. and Agblevor, F.A. (2011). Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydrate Polymers 83: 720-726.
[11] Rojo, E., Alonso, M.V., Dom´ınguez, J.C., Saz-Orozco, B.D., Oliet, M. and Rodriguez, F. (2013). Alkali treatment of viscose cellulosic fibers from eucalyptus wood: structural, morphological, and thermal analysis. J. Appl. Polymer Sci. 130(3): 2198-2204.
[12] Mirahmadi, M., Kabir, M.M., Jeihanipour, A., Karimi, K. and Taherzadeh, M.J. (2010). Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5(2): 928-938.
[13] Kamdem, I., Jacquet, N., Tiappi, F.M., Hiligsmann, S., Vanderghem, C., Richel, A., Jacques, P. and Thonart, P. (2015). Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid Musa AAA group). Waste Management and Research 33 (11): 1022-1032.
[14] Alvira, P., Tomás-Pejó, E., Ballesteros, M. and Negro, M.J. (2010). Pretreatments technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861.
[15] Qin, D., Ren, H., Zhang, L. and Li, Z. (2015). Enhancing enzymatic digestibility of bamboo by fungal pretreatment. Wood Research 60(1): 25-32.
[16] Nazarpour, F., Abdullah, D.K., Abdullah, N. and Zamiri, R. (2013). Evaluation of biological pretreatment of rubber wood with white rot fungi for enzymatic hydrolysis. Materials 6: 2059-2073.
[17] Anwar, Z., Gulfraz, M. and Muhammad, I. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Rad. Res. and Appl. Sci. 7: 163-173.
[18] Alexandropoulou, M., Antonopoulou, G., Ntaikou, I. and Lyberatos, G. (2017). Fungal Pretreatment of willow sawdust with Abortiporus biennis for anaerobic digestion: Impact of an external nitrogen source. Sustainability 9: 130.
[19] Martín-Sampedro, R., López-Linares, J.C., Fillat, U., Gea-Izquierdo, G., Ibarra, D., Castro, E. and Eugenio, M.E. (2017). Endophytic fungi as pretreatment to enhance enzymatic hydrolysis of Olive tree pruning. BioMed Research International, Article ID 9727581.
[20] Yu, J., Zhang, J., He, J., Liu, Z. and Yu, Z. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol. 100(2): 903-908.
[21] Ma F., Yang, N., Xu, C., Yu, H., Wu, J. and Zhang, X. (2010). Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol. 101: 9600-9604.
[22] Megersa, S., Gure, A., Alemu, M. and Feleke, S. (2017a). Qualitative assays and quantitative determinations of laccases of white rot fungi from plantation and natural forests of Arsi forest enterprise, Ethiopia. World Scientific News 67(2): 303-323.
[23] Megersa, S., Gure, A., Feleke, S. and Alemu, M. (2017b). Characterization of MnP and LiP from white rot fungi of plantation and natural forests of Arsi forest enterprise. IJPSS 7(5): 6-25.
[24] Megersa, S. and Gure, A. (2018). Qualitative assays and quantitative determinations of cellulolytic enzymes of wood rot fungi. American-Eurasian J. Agric. and Environ. Sci. 18 (6): 347-357.
[25] Altaf, S.A., Umar, D.M. and Muhammad, M.S. (2010). Production of xylanase enzyme by Pleurotus eryngii and Flamulina velutipes grown on different carbon sources under submerged fermentation. W. Appl. Sci. J. 8: 47-49.
[26] Ogunbayo, A.O, Olanipekun, O.O., and Babatunde D.E. (2016). Effect of pretreatment method on the hydrolysis of corn cob and sawdust. Anadolu Univ. J. of Sci. and Technology - A - Appl. Sci. and Eng. 17 (5): 795-811.
[27] Hussain, A., Shrivastav, A., Jain, S.K., Baghel, R.K., Rani, S. and Agrawale, M.K. (2012). Cellulolytic enzymatic activity of soft rot filamentous fungi Paecilomyces variotii. Advances in Biores. 3(3): 10-17.
[28] Salvachúa, D., Prieto, A., Lopes-Albelaiaras, M., Luchau, T., Martinezs, A.T. and Martinez, M.J. (2011). Fungal pretreatment: an alternative in second generation ethanol from wheat straw. Bioresour. Technol. 102(16): 7500-7506.
[29] Nwakaire, J.N., Ezeoha, S.L. and Ugwuishiwu, B.O. (2013). Production of cellulosic ethanol from wood sawdust. Agri. Eng. Int.: CIGR J. 15(3): 136-140.
[30] Udhayaraja, P. and J.S. Narayanan. (2012). Optimization for production of bioethanol using sorghum stovar by Saccharomyces cerevisiae. International Journal of Research in Pure and Applied Microbiology 2 (4): 64-67.
[31] Ezeoha, S.L., Anyanwu, C.N., and Nwakaire, J.N. (2017). The prospects, impacts, and research challenges of enhanced cellulosic ethanol production: Review. Nigerian Journal of Technology 36 (1): 267-275.
[32] Etonihu, A.C. and Idoko, O. (2014). Bioethanol production from lignocellulosic biomass wastes by fermentation of the hydrolyzates. Standard Sci. Res. Essays 9: 431-437.
[33] Kathiresan, K., Saravanakumar, K. and Senthilraja, S. (2011). Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. Int. Multidi. Sci. R. J. 1(1):19-24.
[34] Ali, E.N. and Jamaludin, M.Z. (2015). Possibility of producing ethanol from Moringa oleifera pod husk. J. Advanced Res. Design 5(1): 1-9.