Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 20 |
Tytuł artykułu

Antibacterial activity of ethanolic leaf extracts obtained from various ficus species (Moraceae) against the fish pathogen, Citrobacter freundii

Treść / Zawartość
Warianty tytułu
Aktywność antybakteryjna etanolowych ekstraktów uzyskanych z liści różnych gatunków fikusów w stosunku do patogenu ryb, Citrobacter freundii
Języki publikacji
The diversity of culturable bacteria inhabiting the Baltic sea surface waters was more divergent at a polluted location than at clean areas. The most important members of the family Enterobacteriaceae that are pathogenic to fish are the enteric redmouth disease agent, Yersinia ruckeri and two species of Edwardsiella, E. tarda and E. ictaluri, Serratia, Proteus and Citrobacter have all been implicated as potential fish pathogens. The use of pharmaceutical substances is rather limited in fish compared to mammalian therapeutics. Medicinal herbs play an alternative role to antibiotic therapy in aquaculture. Ficus species (Moraceae) leaves possess great medicinal potential for the therapy of bacterial and fungal infections and may be used as a natural antiseptic and antimicrobial agent in veterinary. Accordingly, these products can be used in aquaculture as therapeutic and prophylactic agents against fish pathogens, with antimicrobial properties. Present study aimed to investigate the in vitro antimicrobial activity of the ethanolic leaf extracts of various Ficus species against fish pathogen, Citrobacter freundii. The antimicrobial susceptibility testing was done on Muller-Hinton agar by disc diffusion method (Kirby-Bauer disk diffusion susceptibility test protocol). Our results demonstrate that various species of Ficus had mild antibacterial in vitro activity against C. freundii isolated locally from infected eel (Anguilla anguilla L.). The results proved that the extracts from F. drupacea, F. septica, F. deltoidea as well as F. hispida, F. mucuso, F. pumila, F. craterostoma exhibit a favorable antibacterial activity against C. freundii. These validate scientifically their inhibitory capacity attributed by their common use in folk medicine and contribute towards the development of new treatment options in aquaculture based on natural products. The chemical analysis of the aforementioned plant extracts should be performed to determinate their chemical composition and identify the exact phytocompounds responsible for antimicrobial activity against C. freundii. In addition, they should be subjected to pharmacological evaluations with the aim of assessing their in vivo efficacy, toxicity, potential adverse effects, interactions and contraindications. Given the increasing rate of resistance development in bacterial pathogens in aquaculture environments, medicinal plants with antibacterial properties are very important as natural resources for new active compounds.
Zioła lecznicze odgrywają rolę alternatywnej terapii antybiotykowej w akwakulturze. Substancje biologicznie aktywne pozyskiwane z roślin mają równie dobre, a nawet bardziej skuteczne działanie w porównaniu z tradycyjnymi lekami syntetycznymi, w dodatku nie wywołują oporności drobnoustrojów, która często pojawia się podczas antybiotykoterapii. W różnych regionach świata tradycyjnie w celach medycznych stosowane są różne gatunki roślin tropikalnych, fikusy (Moraceae). Głównym celem badań była ocena wrażliwości patogenu ryb Citrobacter freundii na etanolowe ekstrakty z liści wybranych gatunków fikusów. Przeciwbakteryjne działanie ekstraktów oceniano in vitro, stosując metodę dyfuzyjnokrążkową. Nasze wyniki wskazują, że różne gatunki Ficus wykazują in vitro łagodne działanie przeciwbakteryjne przeciwko C. freundii izolowanego lokalnie z zainfekowanego węgorza (Anguilla anguilla L.). Przeprowadzone badania wykazały, że największą aktywność przeciwbakteryjną wobec szczepu C. freundii wykazały etanolowe wyciągi uzyskane z liści gatunków fikusów: F. drupacea, F. septica, F. deltoidea, F. hispida, F. mucuso, F. pumila, F. craterostoma. Wstępne badania screeningowe wskazują zatem, że wyciągi z liści niektórych gatunków fikusów o właściwościach antybakteryjnych mogą stanowić alternatywne środki terapeutyczne przeciwko infekcjom bakteryjnym w akwakulturze. Produkty te mogą być stosowane jako środki terapeutyczne i profilaktyczne, niemniej jednak powinni jeszcze zostać przeprowadzone bardzo intensywne badania dotyczące ich właściwości przeciwbakteryjnych.
Opis fizyczny
  • Department of Zoology and Animal Physiology, Institute of Biology and Environmental Protection, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
  • M.Gryshko National Botanical Garden, National Academy of Science of Ukraine, Timiryazevska str.1, 01014 Kyiv, Ukraine
  • Department of Epizootiology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
  • Department of Zoology and Animal Physiology, Institute of Biology and Environmental Protection, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
  • Abdsamah O., Zaidi N.T., Sule A.B., 2012. Antimicrobial activity of Ficus deltoidea Jack (Mas Cotek). Pak. J. Pharm. Sci., 25(3), 675-678.
  • Abdul Kader Mydeen K.P., Haniffa M.A., 2011. Evaluation of antibacterial activity of medicinal plants on fish pathogen, Aeromonas hydrophila. J. Res. Biol., 1, 1-5.
  • Adam Z., Hamid M., Ismail A., Khamis S., 2009. Effect of Ficus deltoidea extracts on hepatic basal and insulin-stimulated glucose uptake. J. Biol. Sci., 9(2), 9-16.
  • Ahmad S., Rao H., Akhtar M., Ahmad I., Hayat M.M., Iqbal Z., Nisar-ur-Rahman, 2011. Phytochemical composition and pharmacological prospectus of Ficus bengalensis Linn. (Moraceae) – A review. J. Med. Plants Res., 5, 6393-6400.
  • Al Laham S.A., Al Fadel F.M., 2014. Antibacterial Activity of Various Plants Extracts Against Antibiotic-resistant Aeromonas hydrophila. Jundishapur J. Microbiol., 7(7), e11370.
  • Al-Bahry S.N., Mahmoud I.Y., Al-Belushi K.I., Elshafie A.E., Al-Harthy A., Bakheit C.K., 2009. Coastal sewage discharge and its impact on fish with reference to antibiotic resistant enteric bacteria and enteric pathogens as bio-indicators of pollution. Chemosphere, 77(11), 1534-1539.
  • Anusha P., Thangaviji V., Velmurugan S., Michaelbabu M., Citarasu T., 2014. Protection of ornamental gold fish Carassius auratus against Aeromonas hydrophila by treating Ixora coccinea active principles. Fish Shellfish Immunol., 36(2), 485-493.
  • Arunachalam K., Parimelazhagan T., 2013. Anti-inflammatory, wound healing and in-vivo antioxidant properties of the leaves of Ficus amplissima Smith. J. Ethnopharmacol., 145(1), 139-145.
  • Authors of plant names. A list of authors of scientific names of plants, with recommended standard forms of their names, including abbreviations. 1992. (Eds) R.K. Brummit, C.E.P. Powell, Royal Botanic Gardens, Kew.
  • Azerêdo G.A., Stamford T.L., Figueiredo R.C., Souza E.L., 2012. The cytotoxic effect of essential oils from Origanum vulgare L. and/or Rosmarinus officinalis L. on Aeromonas hydrophila. Foodborne Pathog. Dis., 9(4), 298-304.
  • Badger J.L., Stins M.F., Kim K.S., 1999. Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect. Immun., 67(8), 4208-4215.
  • Bauer A.W., Kirby W.M., Sherris J.C., Turck M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4), 493-496.
  • Baya A.M., Lupiani B. and Hetrick F., 1990. Increasing importance of Citrobacter freundii as a fish pathogen. AFS/FHS Newsletter, 18, 4.
  • Baya A.M., Toranzo A.E., Lupiani B., Santos Y., Hetrick, KM., 1992. Serratia marcescens: a potential pathogen of fish. J. Fish Dis., 15, 15-26.
  • Bejerano Y., Sarig S., Home M.T., Roberts R.J., 1979. Mass mortalities in silvercarp (Hypophthalmichthys molitrix (Valenciennes)) associated with bacterial infection following handling. J. Fish Dis., 2, 49-56.
  • Bunawan H., Amin N.M., Bunawan S.N., Baharum S.N., Mohd Noor N., 2014. Ficus deltoidea Jack: A Review on Its Phytochemical and Pharmacological Importance. Evid. Based Complement. Alternat. Med., 2014, 902734.
  • Burka J.F., Hammell K.L., Horsberg T.E., Johnson G.R., Rainnie D.J., Speare D.J., 1997. Drugs in salmonid aquaculture – a review. J. Vet. Pharmacol. Ther., 20(5), 333-349.
  • Chen Y.S., Wong W.W., Fung C.P., Yu K.W., Liu C.Y., 2002. Clinical features and antimicrobial susceptibility trends in Citrobacter freundii bacteremia. J. Microbiol. Immunol. Infect., 35(2), 109-114.
  • Cherian S., Augusti K.T., 1993. Antidiabetic effects of a glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Indian J. Exp. Biol., 31(1), 26-29.
  • Cowan M.M., 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12(4), 564-582.
  • Cushnie T.P., Cushnie B., Lamb A.J., 2014. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 44(5), 377-386.
  • Cushnie T.P., Lamb A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26(5), 343-356.
  • Daly J.D., Aoki T., 2011. Pasteurellosis and Other Bacterial Diseases. In: Fish Diseases and Disorders. Vol. 3: Viral, Bacterial and Fungal Infections, (Ed.) P.T.K. Woo and D. W. Bruno, 2nd ed., CABI Int., Wallingford, 632-668.
  • Damu A.G., Kuo P.C., Shi L.S., Li C.Y., Kuoh C.S., Wu P.L., Wu T.S., 2005. Phenanthroindolizidine alkaloids from the stems of Ficus septica. J. Nat. Prod., 68(7), 1071-1075.
  • Damu A.G., Kuo P.C., Shi L.S., Li C.Y., Su C.R., Wu T.S., 2009. Cytotoxic phenanthroindolizidine alkaloids from the roots of Ficus septica. Planta Med., 75(10), 1152-1156.
  • Dangarembizi R., Erlwanger K.H., Moyo D., Chivandi E., 2012. Phytochemistry, pharmacology and ethnomedicinal uses of Ficus thonningii (Blume Moraceae): a review. Afr. J. Tradit. Complement. Altern. Med., 10(2), 203-212.
  • Davis E.B., Schmidt D., 1996. Guide to information sources in the botanical sciences (2 ed.). Libraries Unlimited Englewood, Colo.
  • Dsikowitzky L., Nordhaus I., Jennerjahn T.C., Khrycheva P., Sivatharshan Y., Yuwono E., Schwarzbauer J., 2011. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Mar. Pollut. Bull., 62(4), 851-862.
  • Dzolin S., Ahmad R., Zain M.M., Ismail M.I., 2015. Flavonoid distribution in four varieties of Ficus deltoidea (Jack). J. Med. Plant Herb. Ther. Res., 3, 1-9.
  • Edlund A., Soule T., Sjöling S., Jansson J.K., 2006. Microbial community structure in polluted Baltic Sea sediments. Environ. Microbiol., 8(2), 223-232.
  • Farsi E., Ahmad M., Hor S.Y., Ahamed M.B., Yam M.F., Asmawi M.Z., 2014. Standardized extract of Ficus deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats. BMC Complement. Altern. Med., 14, 220.
  • Fernández A., Vela AI., Andrada M., Herraez P., Díaz-Delgado J., Domínguez L., Arbelo M., 2011. Citrobacter freundii septicemia in a stranded newborn Cuvier’s beaked whale (Ziphius cavirostris). J. Wildl Dis., 47(4), 1043-1046.
  • Giri S.S., Sen S.S., Chi C., Kim H.J., Yun S., Park S.C., Sukumaran V., 2015. Effect of guava leaves on the growth performance and cytokine gene expression of Labeo rohita and its susceptibility to Aeromonas hydrophila infection. Fish Shellfish Immunol., 46(2), 217-224.
  • Gul-e-Rana, Karim S., Khurhsid R., Saeed-ul-Hassan S., Tariq I., Sultana M., Rashid A.J., Shah S.H., Murtaza G., 2013. Hypoglycemic activity of Ficus racemosa bark in combination with oral hypoglycemic drug in diabetic human. Acta Pol. Pharm., 70(6), 1045-1049.
  • Haniffa M.A., Kavitha K., 2012. Antibacterial activity of medicinal herbs against the fish pathogen Aeromonas hydrophila. J. Agricu. Technol., 8(1), 205-211.
  • Hantula J., Koivula T.T., Luo C., Bamford D.H., 1996. Bacterial diversity at surface water in three locations within the Baltic sea as revealed by culture-dependent molecular techniques. J. Basic Microbiol., 36(3), 163-176.
  • Hennersdorf P., Kleinertz S., Theisen S., Abdul-Aziz M.A., Mrotzek G., Palm H.W., Saluz H.P, 2016. Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions. PLoS One, 11(3), e0151594.
  • Ilyanie Y., Wong T.W., Choo C.Y., 2011. Evaluation of hypoglycemic activity and toxicity profiles of the leaves of Ficus deltoidea in rodents. J. Complement. Integr. Med., 8.
  • Jeremic S., Jakic-Dimic D., Veljovic L.J., 2003. Citrobacter freundii as a cause of disease in fish. Acta Vet. (Beograd), 53(5-6), 399-410.
  • Jones S.D., Wipff J.K., Montgomery P.M., 1997. Vascular Plants of Texas: A Comprehensive Checklist Including Synonymy, Bibliography, and Index. University of Texas Press.
  • Karunasagar I., Karunasagar I., Pai R., 1992. Systematic Citrobacter freundii infection in common carp, Cyprinus carpio L., fingerlings. J. Fish Dis., 15, 95-98.
  • Kirana H., Agrawal S.S., Srinivasan B.P., 2009. Aqueous extract of Ficus religiosa Linn. reduces oxidative stress in experimentally induced type 2 diabetic rats. Indian J. Exp. Biol., 47(10), 822-826.
  • Kirana H., Jali M.V., Srinivasan B.P., 2011. The study of aqueous extract of Ficus religiosa Linn. on cytokine TNF-α in type 2 diabetic rats. Pharmacognosy Res., 3(1), 30-34.
  • Kubo M., Yatsuzuka W., Matsushima S., Harada K., Inoue Y., Miyamoto H., Matsumoto M., Fukuyama Y., 2016. Antimalarial Phenanthroindolizine Alkaloids from Ficus septica. Chem. Pharm. Bull. (Tokyo), 64(7), 957-960.
  • Kumar R.V., Augusti K.T., 1989. Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Indian J. Biochem. Biophys., 26(6), 400-404.
  • Mori A., Nishino C., Enoki N., Tawata S., 1987. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry, 26(8), 2231-2234.
  • Nawaz M., Khan A.A., Khan S., Sung K., Steele R., 2008. Isolation and characterization of tetracycline-resistant Citrobacter spp. from catfish. Food Microbiol., 25(1), 85-91.
  • Nugroho A.E., Hermawan A., Putri D.P., Meiyanto E., Hakim L., 2012. Synergistic effects of ethyl acetate fraction of Ficus septica Burm. f. and doxorubicin chemotherapy on T47D human breast cancer cell line. Zhong Xi Yi Jie He Xue Bao, 10(10), 1162-1170.
  • OIE Fish Diseases Commission 2016, access on 03/08/2016.
  • Okoth D.A., Chenia H.Y., Koorbanally N.A., 2013. Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochem. Lett., 6, 476-481.
  • Padmanabhan P., Jangle S.N., 2012. Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. Int. J. App. Basic Med. Res., 2, 109-116.
  • Pandey G., Sharma M., Mandloi A.K., 2012. Medicinal plants useful in fish diseases. Plant Archives, 2(1), 1-4.
  • Rigos G., Troisi G.M., 2005. Antibacterial agents in Mediterranean finfish farming: A sinopsis of drug pharm acokinetics in important euryhaline fish species and possible environmental implications. Rev. Fish Biol. Fisher., 15, 53-73.
  • Rinawati Koike T., Koike H., Kurumisawa R., Ito M., Sakurai S., Togo A., Saha M., Arifin Z., Takada H., 2012. Distribution, source identification, and historical trends of organic micropollutants in coastal sediment in Jakarta Bay, Indonesia. J. Hazard Mater., 217-218, 208-216.
  • Salem M.Z.M., Salem A.Z.M., Camacho L.M., Ali H.M., 2013. Antimicrobial activities and phytochemical composition of extracts of Ficus species: An overview. Afr. J. Microbiol. Res., 7(33), 4207-4219.
  • Sanz F., 1991. Rainbow trout mortalities associated with a mixed infection with Citrobacter freundii and IPN virus. Bull. Eur. Ass. Fish Pathol., 11, 222.
  • Sato N., Yamane N., Kawamura T., 1982. Systemic Citrobacter freundii infection among sunfish Mola mola in Matsushima Aquarium. Bull. Japan. Soc. Fish., 48, 1551-1557.
  • Stara A., Sergejevova M., Kozak P., Masojidek J., Velisek J., Kouba A., 2014. Resistance of common carp (Cyprinus carpio L.) to oxidative stress after chloramine-T treatment is increased by microalgae carotenoid-rich diet. Neuro Endocrinol. Lett., 35, Suppl. 2, 71-80.
  • Sukumaran V., Park S.C., Giri S.S., 2016. Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings. Fish Shellfish Immunol., 57, 362-370.
  • Sutili F.J., Silva Lde L., Gressler L.T., Gressler L.T., Battisti E.K., Heinzmann B.M., de Vargas A.C., Baldisserotto B., 2015. Plant essential oils against Aeromonas hydrophila: in vitro activity and their use in experimentally infected fish. J. Appl. Microbiol., 119(1), 47-54.
  • Thanigaivel S., Vijayakumar S., Gopinath S., Mukherjee A., Chandrasekaran N., Thomas J., 2015. In vivo and in vitro antimicrobial activity of Azadirachta indica (Lin.) against Citrobacter freundii isolated from naturally infected Tilapia (Oreochromis mossambicus). Aquaculture, 437, 252-255.
  • Tkachenko H., Buyun L., Terech-Majewska E., Osadowski Z., Sosnovskyi Y., Honcharenko V., Prokopiv A., 2016a. The antimicrobial activity of some ethanolic extracts obtained from Ficus spp. leaves against Aeromonas hydrophila. Trudy VNIRO (Труды ВНИРО), 162, 172-183.
  • Tkachenko H.M., Buyun L.I., Truchan M.A., Osadowski Z., Sosnovskyi Y.V., Honcharenko V.I., Prokopiv A.I., 2016b. Antimicrobial activities of the ethanolic extract from Ficus hispida L.f. leaves (Moraceae). Zbirnyk materialiv dopovidey Mizhnarodnoi naukovopraktychnoi konferentsii «Resursozberihayuchi tekhnolohii ta yikh pravova i ekonomichna otsinka v silskohospodarskomu vyrobnytstvi» («Sustainable technologies and the legal economic aspects of agricultural production»), Natsionalnyi universytet bioresursiv i pryrodokorystuvannya Ukrainy, 27-28 kvitnya 2016 r., m. Kyiv, 175-177.
  • Toranzo A.E., Cutrin J.M., Roberson B.S., Nunez S., Abell J.M., Hetrick F.M., Baya A.M., 1994. Comparison of the taxonomy, serology, drug resistance transfer, and virulence of Citrobacter freundii strains from mammals and poikilothermic hosts. Appl. Envi. Microbiol., 60, 1789-1797.
  • Tukmechi A., Ownagh A., Mohebbat A., 2010. In vitro antibacterial activities of ethanol extract of Iranian propolis (EEIP) against fish pathogenic bacteria (Aeromonas hydrophila, Yersinia ruckeri and Streptococcus iniae). Brazilian J. Microbiol., 41(4), 1086-1092.
  • Ueda J.Y., Takagi M., Shinya K., 2009. Aminocaprophenone- and pyrrolidine-type alkaloids from the leaves of Ficus septica. J. Nat. Prod., 72(12), 2181-2183.
  • Usman H., Abdulrahman F., Usman A., 2009. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr. J. Tradit. Complement. Altern. Med., 6(3), 289-295.
  • Uyub A.M., Nwachukwu I.N., Azlan A.A., Fariza S.S., 2010. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from penang island Malaysia on metronidazole-resistant Helicobacter pylori and some pathogenic bacteria. Ethnobot. Res. Appl., 8, 95-106.
  • Winkaler E.U., Santos T.R.M., Machado-Neto J.G., Martinez C.B.R., 2007. Acute lethal and sub-lethal effects of neem leaf extract on the neotropical freshwater fish, Prochilodus lineatus. Comp. Biochem. Physiol., Part C, 145, 236-244.
  • Wu P.L., Rao K.V., Su C.H., Kuoh C.S., Wu T.S., 2002. Phenanthroindolizidine alkaloids and their cytotoxicity from the leaves of Ficus septica. Heterocycles, 57(12), 2401-2408.
  • Yessoufou K., Elansary H.O., Mahmoud E.A., Skalicka-Wozniak K., 2015. Antifungal, antibacterial and anticancer activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. Ind. Crops Prod., 74, 752-758.
  • Yin G., Ardó L., Thompson K.D., Adams A., Jeney Z., Jeney G., 2009. Chinese herbs (Astragalus radix and Ganoderma lucidum) enhance immune response of carp, Cyprinus carpio, and protection against Aeromonas hydrophila. Fish Shellfish Immunol., 26(1), 140-145.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.