PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 69 | 2 |

Tytuł artykułu

Predicting the botanical origin of honeys with chemometric analysis according to their antioxidant and physicochemical properties

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to develop models based on Linear Discriminant Analysis (LDA), Classi cation and Regression Trees (C&RT), and Arti cial Neural Network (ANN) for the prediction of the botanical origin of honeys using their physicochemical parameters as well as their antioxidative and thermal properties. Also Principal Component Analysis (PCA) and Cluster Analysis (CA) were performed as initial steps of data mining. The datasets consisted of 72 honey samples (false acacia, rape, buckwheat, honeydew, linden, nectar-honeydew and multi oral) obtained from different regions of Poland and collected between April 2014 and November 2016. Ash content, pH, free acidity, colorimetric coordinates in the CIELAB space (L*, a*,b*, h*, C*), total phenolics content, antioxidant activity, and glass transition temperatures (Tg) of the honey samples were determined. The rst four principal components accounted for about 85% of the total variance. PC1 was highly correlated with colour intensity, the hue angle (h*), and total phenolics content, whereas PC2 was dominated by chroma (C*) value and glass transition temperatures (Tg ). The CA dendrogram displays two clusters: one with light coloured honey samples and second with dark coloured honey samples. On the basis of the LDA analysis, the colour parameters possessed the highest discrimination power according to the botanical origin of honey samples. The models based on ANN and C&RT algorithms were characterized by 100% accuracy. Study results demonstrate that the chemometric approach enables high-accuracy classi cation of honeys according to their botanical origin.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

2

Opis fizyczny

p.191-201,fig.,ref.

Twórcy

autor
  • Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
  • Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
  • Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
autor
  • Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland

Bibliografia

  • 1. Ahmed, J., Prabhu, S.T., Raghavan, G.S.V., Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering, 79(4), 1207-1213.
  • 2. Al-Mamary, M., Al-Meeri, A., Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research, 22(9), 1041-1047.
  • 3. Al, M.L., Daniel, D., Moise, A., Bobis, O., Laslo, L., Bogdanov, S. (2009). Physico-chemical and bioactive properties of different oral origin honeys from Romania. Food Chemistry, 112(4), 863-867.
  • 4. Alvarez-Suarez, J.M., Gonzá lez- Paramás, A.M., Santos-Buelga, C., Battino, M. (2010). Antioxidant characterization of native mono oral Cuban honeys. Journal of Agricultural and Food Chemistry, 58(17), 9817-9824.
  • 5. Alves, A., Ramos, A., Gonçalves, M.M., Bernardo, M., Mendes, B. (2013). Antioxidant activity, quality parameters and mineral content of Portuguese mono oral honeys. Journal of Food Composition and Analysis, 30(2), 130-138.
  • 6. Anjos, O., Iglesias, C., Peres, F., Martínez, J., García, Á., Taboada, J. (2015). Neural networks applied to discriminate botanical origin of honeys. Food Chemistry, 175, 128-136.
  • 7. AOAC (1995). Of cial Methods of Analysis. Washington, DC: Association of Of cial Analytical Chemists.
  • 8. AOAC (1996). Of cial Methods of Analysis (16th ed.). Washington, DC: Association of Of cial Analytical Chemists. Method: 962.19 vol. II.
  • 9. BaltruĄaityt , V., Venskutonis, P.R., eksteryt , V. (2007). Radical scavenging activity of different oral origin honey and beebread phenolic extracts. Food Chemistry, 101(2), 502-514.
  • 10. Benedetti, S., Mannino, S., Sabatini, A.G., Marcazzan, G.L. (2004). Electronic nose and neural network use for the classication of honey. Apidologie, 35(4), 397-402.
  • 11. Bentabol Manzanares, A., García, Z.H., Galdón, B.R., Rodríguez, E.R., Romero, C.D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664-672.
  • 12. Beretta, G., Granata, P., Ferrero, M., Orioli, M., Maffei Facino, R. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/ uorimetric assays and chemometrics. Analytica Chimica Acta, 533(2), 185-191.
  • 13. Berrueta, L.A., Alonso-Salces, R.M., Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214.
  • 14. Bertelli, D., Lolli, M., Papotti, G., Bortolotti, L., Serra, G., Plessi, M. (2010). Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional High-Resolution Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry, 58(15), 8495-8501.
  • 15. Bertoncelj, J., DoberĄek, U., Jamnik, M., Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105(2), 822-828.
  • 16. Bogdanov, S., Ruoff, K., Persano Oddo, L. (2004). Physicochemical methods for the characterisation of uni oral honeys: a review. Apidologie, 35, Suppl. 1, 4-17.
  • 17. Bogdanov, S., Jurendic, T., Sieber, R., Gallmann, P. (2008). Honey for nutrition and health: A Review. Journal of the American College of Nutrition, 27(6), 677-689.
  • 18. Brudzynski, K., Miotto, D. (2011a). Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chemistry, 127(3), 1023-1030.
  • 19. Brudzynski, K., Miotto, D. (2011b). The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chemistry, 125(2), 570-575.
  • 20. Chudzinska, M., Baralkiewicz, D. (2010). Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food and Chemical Toxicology, 48(1), 284-290.
  • 21. Cordella, C., Antinelli, J.-F., Aurieres, C., Faucon, J.-P., Cabrol-Bass, D., Sbirrazzuoli, N. (2002). Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. Journal of Agricultural and Food Chemistry, 50(1), 203-208.
  • 22. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Of cial Journal of the European Communities, L 10, 12.1.2002, 47
  • 23. de la Fuente, E., Ruiz-Matute, A.I., Valencia-Barrera, R.M., Sanz, J., Martínez Castro, I. (2011). Carbohydrate composition of Spanish uni oral honeys. Food Chemistry, 129(4), 1483-1489.
  • 24. D ugan, M., Tomczyk, M., Sowa, P., Grabel-Lejko, D. (2018). Anioxidant activity as biomarker of honey variety. Molecules, 23(8), art. no. 2069.
  • 25. Estevinho, L., Pereira, A.P., Moreira, L., Dias, L.G., Pereira, E. (2008). Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology, 46(12), 3774-3779.
  • 26. Gheldof, N., Wang, X.-H., Engeseth, N.J. (2002). Identi cation and quanti cation of antioxidant components of honeys from various oral sources. Journal of Agricultural and Food Chemistry, 50(21), 5870-5877.
  • 27. Gonzalez-Miret, M.L., Terrab, A., Hernanz, D., Fernández-Recamales, M.Á., Heredia, F.J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53(7), 2574-2580.
  • 28. Habib, H.M., Al Meqbali, F.T., Kamal, H., Souka, U.D., Ibrahim, W.H. (2014). Physicochemical and biochemical properties of honeys from arid regions. Food Chemistry, 153, 35-43.
  • 29. Juszczak, L., Socha, R., Ro nowski, J., Fortuna, T., Nalepka, K. (2009). Physicochemical properties and quality parameters of herbhoneys. Food Chemistry, 113(2), 538-542.
  • 30. Krpan, M., Markovi , K., §ari , G., Skoko, B., HruĄkar, M.,Vah i , N. (2009). Antioxidant activities and total phenolics of acacia honey. Czech Journal of Food Science, 27, SI, S245-S247.
  • 31. Lazaridou, A., Biliaderis, C.G., Bacandritsos, N., Sabatini, A.G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9-21.
  • 32. Madejczyk, M., Baralkiewicz, D. (2008). Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Analytica Chimica Acta, 617(1-2), 11-17.
  • 33. Meda, A., Lamien, C.E., Romito, M., Millogo, J., Nacoulma, O.G. (2005). Determination of the total phenolic, avonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577.
  • 34. Mellen, M., Fikselová, M., Mendelová, A., HaĄ ik, P. (2015). Antioxidant effect of natural honeys affected by their source and origin. Polish Journal of Food and Nutrition Sciences, 65(2), 81-85.
  • 35. M odzi ska, E. (2009). Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biologica Cracoviensia, Series Botanica, 51(1), 7-16.
  • 36. Muzolf-Panek, M., Waskiewicz, A., Kowalski, R., Konieczny, P. (2016). The effect of blueberries on the oxidative stability of pork meatloaf during chilled storage. Journal of Food Processing and Preservation, 40, 899-909.
  • 37. Nayik, G.A., Nanda, V. (2016). A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different uni oral honey types from Kashmir, India. LWT - Food Science and Technology, 74, 504-513.
  • 38. Nayik, G.A., Suhag, Y., Majid, I., Nanda, V. (2016). Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals. Journal of the Saudi Society of Agricultural Sciences, 17(2), 200-2007.
  • 39. Pasini, F., Gardini, S., Marcazzan, G.L., Caboni, M.F. (2013). Buckwheat honeys: screening of composition and properties. Food Chemistry, 141(3), 2802-2811.
  • 40. Polish Standard PN-88/A-77626 (1998). Honeybee honey. Dziennik Norm i Miar nr 8, Wydawnictwo Normalizacyjne Alfa (in Polish).
  • 41. Popek, S., Halagarda, M., Kursa, K. (2017). A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT - Food Science and Technology, 77, 482-487.
  • 42. Sánchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F. (1998). A procedure to measure the antiradical ef ciency of polyphenols. Journal of the Science of Food and Agriculture, 270(2), 270-276.
  • 43. Sanz, M.L., Gonzalez, M., de Lorenzo, C., Sanz, J., Martínez-Castro, I. (2005). A contribution to the differentiation between nectar honey and honeydew honey. Food Chemistry, 91(2), 313-317.
  • 44. Siddiqui, A.J., Musharraf, S.G., Choudhary, M.I., Rahman, A. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687-698.
  • 45. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144 LP-158.
  • 46. Tomaszewska-Gras, J., Bakier, S., Goderska, K., Mansfeld, K. (2015). Differential scanning calorimetry for determining the thermodynamic properties of selected honeys. Journal of Apicultural Science, 59(1), 109-118.
  • 47. Tonon, R.V., Baroni, A.F., Brabet, C., Gibert, O., Pallet, D., Hubinger, M.D. (2009). Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering, 94(3-4), 215-221.
  • 48. Tuberoso, C.I.G., Jerkovi , I., Sarais, G., Congiu, F., Marijanovi , Z., Ku , P.M. (2014). Color evaluation of seventeen European uni oral honey types by means of spectrophotometrically determined CIE L*C abHab° chromaticity coordinates. Food Chemistry, 145, 284-291.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bdd7de5c-6541-414c-873b-3785fe6f737c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.