PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 1 |

Tytuł artykułu

Species richness, abundance and functional diversity of a bat community along an elevational gradient in the Espinhaco mountain range, southeastern Brazil

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bats are an excellent taxonomic group for research on elevational gradients and functional diversity, as they present a large number of species and functional traits. In general, elevation has a negative influence on bat diversity, but the effect is not necessarily linear. Often the effect of elevation on diversity may have a hump-shaped pattern, in which diversity metrics peak in intermediate elevations before decreasing at the highest parts of the elevational gradient. In this study, we investigated the effect of elevation on bat species richness, abundance, and functional diversity in Rio Preto State Park (RPSP), a protected area located in the Espinhaço mountain range, a region globally recognized for its high rates of biodiversity. We found that RPSP harbours 22 bat species, which represent 69% of the species occurring in the Espinhaço range and include species of conservation concern. Bat species richness and abundance was linearly and inversely correlated to elevation, whereas functional diversity had a hump-shaped pattern, with higher values found in the intermediate portion of the elevational gradient. Our findings agree with other studies showing the overall negative effect of elevation on bat diversity and contribute to the still sparse knowledge about the effect of elevation on bats in Brazil and in the Espinhaço range. Furthermore, our results suggest that natural environments in lower and intermediate elevations (< 1,100 m a.s.l.) in this mountain range may have high biodiversity value for bats, and actions aiming at their protection would complement the conservation efforts focusing on endemic species associated with higher habitats in the Espinhaço.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.129-138,fig.,ref.

Twórcy

  • Programa de Pos-Graduacao em Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
autor
  • Laboratorio de Ecologia e Conservacao, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos 6627, Pampulha, Belo Horizonte, MG, Brazil
  • Laboratorio de Ecologia de Insetos, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
  • Departamento de Biologia Geral, Universidade Estadual de Montes Claros - Unimontes, Montes Claros, MG, Brazil
  • Instituto Biotropicos, Praça JK, 25, Diamantina, MG, Brazil
  • Centre for Biodiversity & Environment Research, University College London, Gower Street, London, United Kingdom
  • Institute of Zoology, Zoological Society of London, Regent's Park, London, United Kingdom

Bibliografia

  • 1. Aguiar, L. M. S., E. Bernard, V. Ribeiro, R. B. MacHado, and G. Jones. 2016. Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5: 22–33. Google Scholar
  • 2. Barata, I. M., C. M. Correia and G. B. Ferreira. 2016. Amphbian species composition and priorities for regional conservation at the Espinhaço mosaic, Southeastern Brazil. Herpetological Conservation and Biology, 11: 293–303. Google Scholar
  • 3. Bejarano-Bonilla, D. A., R. Yate, and M. H. Bernal-B. 2007. Diversidad y distribucion de la fauna quiroptera en untransecto altitudinal en el departamento del Tolima, Colombia. Cal da sia, 2: 297–308. Google Scholar
  • 4. Bello, F., J. Lepš, S. Lavorel, and M. Moretti. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology, 8: 163–170. Google Scholar
  • 5. Bernard, E. and M. B. Fenton. 2003. Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Biotropica, 35: 262–277. Google Scholar
  • 6. Bianconi, G. V., R. Gregorin, and D. C. Carneiro. 1996. Range extension of the Peale's free-tailed bat Nyctinomops aurispinosus Molossidae) in Brazil. Biota Neotropica, 9: 267–270. Google Scholar
  • 7. Bordignon, M. O., and A. O. Franca. 2009. Riqueza, diversidade e variacão altitudinal em uma comunidade de morcegos filostomıdeos (Mammalia: Chiroptera) no centro-oeste do Brasil. Chiroptera Neotropical, 15: 425–433. Google Scholar
  • 8. Botta-Dukat, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16: 533–540. Google Scholar
  • 9. Carneiro, M. A. A., G. W. Fernandes, and O. F. F. Souza. 2005. Convergence in the variation of local and regional galling species richness. Neotropical Entomology, 34: 547–553. Google Scholar
  • 10. Carneiro, M. A. A., R. A. X. Borges, A. P. A. Araujo, and G. W. Fernandes. 2009. Insetos indutores de galhas da porcao sul da Cadeia do Espinhaço, MG. Revista Brasileira de Entomologia, 53: 570–592. Google Scholar
  • 11. Cianciaruso, M. V., I. A. Silva and M. A. Batalha. 2009. Diversidades filogenetica e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotropica, 3: 1–11. Google Scholar
  • 12. Colwell, R. K. and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society, 345B: 101–118. Google Scholar
  • 13. Colwell, R. K., C. X. Mao, and J. Chang. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85: 2717–2727. Google Scholar
  • 14. Costa, F. V., R. Mello, T. C. Lana, and F. S. Neves. 2015. Ant fauna in megadiverse mountains: a checklist for the rocky grasslands. Sociobiology, 62: 228–245. Google Scholar
  • 15. Coutinho, E. S., G. W. Fernandes, R. L. Berbara, H. M. Valerio, and B. T. Goto. 2015. Variation of arbuscular mycorrhizal fungal communities along an altitudinal gradient in rupestrian grasslands in Brazil. Mycorrhiza, 25: 627–638. Google Scholar
  • 16. Crawley, M. J. 2012. The R Book, 2nd edition. John Wiley & Sons. Chichester, 1051 pp. Google Scholar
  • 17. Curran, M., M. Kopp, J. Beck, and J. Fahr. 2012. Species diversity of bats along an altitudinal gradient on Mount Mulanje, southern Malawi. Journal of Tropical Ecology, 28: 243–253. Google Scholar
  • 18. Debastiani, V. J., and V. D. Pillar. 2012. SYNCSA — R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics, 28: 2067–2068. Google Scholar
  • 19. Dehling, D. M., T. Topfer, H. M. Schaefer, P. Jordano, K. Bo Hning-Gaese, and M. Schleuning. 2014. Functional relationships beyond species richness patterns: trait matching in plant-bird mutualisms across scales. Global Ecology and Biogeography, 23: 1085–1093. Google Scholar
  • 20. Dias, D., and A. L. Peracchi. 2008. Bats from Tingua Biological Reserve, Rio de Janeiro state, southeastern Brazil (Mammalia: Chiroptera). Revista Brasileira de Zoologia, 25: 333–369. Google Scholar
  • 21. Diaz, S., J. Fargione, C. F. Stuart III , and D. Tilman. 2006. Biodiversity loss threatens human well-being. PLoS Biology, 4: e277. Google Scholar
  • 22. Eisenberg, J. F., and K. H. Redford. 1999. Mammals of Neotropics, Volume 3: Ecuador, Bolivia, Brazil. The University of Chicago Press, Chicago, 609 pp. Google Scholar
  • 23. Emmons, L. H., and F. Feer. 1997. Neotropical rainforest mammals: a field guide, 2nd edition. University of Chicago Press, Chicago, 318 pp. Google Scholar
  • 24. Esberard, C. E. L. 2004. Morcegos no Estado do Rio de Janeiro. Ph.D. Thesis, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 238 pp. Google Scholar
  • 25. Eterovick, P. C., A. C. O. Q. Carnaval, D. M. Borgesnojosa, D. L. Silvano, M. V. Segalla and I. Sazima. 2005. Amphibian declines in Brazil: an overview. Biotropica, 37: 166–179. Google Scholar
  • 26. Ferreira, L. G., H. Yoshioka, A. Huete, and E. E. Sano. 2003. Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: an analysis within the large-scale biosphere-atmosphere experiment in Amazonia (LBA). Remote Sensing of Environment, 87: 534–550. Google Scholar
  • 27. Gannon, M. R., M. R. Willig, and J. K. Jones, Jr . 1989. Sturnira lilium. Mammalian Species, 333: 1–5. Google Scholar
  • 28. Gardner, A. F. 2008. Order Chiroptera. Pp. 187–580, in Mammals of South America. Volume 1: Marsupials, xernarthrans, shrews and bats ( A. F. Gardner, ed.). University of Chicago Press, Chicago, Illinois, xx + 669 pp. Google Scholar
  • 29. Geraldes, M. P. 1999. Aspectos ecologicos da estruturacao de um conjunto taxionomico de morcegos na regiao de Ariri (Cananeia, SP). M.Sci. Thesis, Universidade de Sao Paulo, Sao Paulo, 128 pp. Google Scholar
  • 30. Goodman, S. M., A. Andrianarimisa, L. E. Olson, and V. Sorimalala. 1996. Patterns of elevational distribution of birds and small mammals in the humid forests of Montagne D'Ambre, Madagascar. Ecotropica, 2: 87–98. Google Scholar
  • 31. Graham, G. L. 1983. Changes in bat species diversity along an elevational gradient up Peruvian Andes. Journal of Mammalogy, 64: 559–571. Google Scholar
  • 32. Graham, G. L. 1990. Bats versus birds: comparisons among Peruvian vertebrate faunas along an elevational gradient. Journal of Biogeography, 17: 657–668. Google Scholar
  • 33. Heaney, L. R. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography, 10: 15–39. Google Scholar
  • 34. Heaney, L. R., P. D. Heideman, E. A. Rickart, R. B. Utzurrum and J. S. H. Klompen. 1989. Elevational zonation of mammals in the central Philippines. Journal of Tropical Ecology, 5: 259–280. Google Scholar
  • 35. Hopper, S. D., F. A. O., Silveira, and P. L. Fiedler. 2016. Biodiversity hotspots and Ocbil theory. Plant and Soil, 403: 167–216. Google Scholar
  • 36. Horner, M. A., T. H. Fleming, and C. T. Sahey. 1998. Foraging behaviour and energetics of a nectar-feeding bat, Leptony cteris curasoae (Chiroptera: Phyllostomidae). Journal of Zoology (London), 244: 575–586. Google Scholar
  • 37. Ief-Mg. 2004. Plano de manejo do Parque Estadual do Rio Preto. IEF-MG, Belo Horizonte, 217 pp. Google Scholar
  • 38. IUCN. 2015. The IUCN Red List of Threatened Species. www.iucnredlist.org. Visited on 03 June 2016. Google Scholar
  • 39. Jaberg, C. and A. Guisan. 2001. Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment. Journal of Applied Ecology, 38: 1169–1181. Google Scholar
  • 40. Juste, B. J., and J. Perez Del Val. 1995. Altitudinal variation in the subcanopy fruit bat guild in Bioko Island, Equatorial Guinea, Central Africa. Journal of Tropical Ecology, 11: 141–146. Google Scholar
  • 41. Kanuch, P. and A. Kristin, 2006. Altitudinal distribution of bats in the Polana Mts area (Central Slovakia). Biologia, 61: 605–610. Google Scholar
  • 42. Korner, C. 2000. Biosphere responses to CO2 enrichment. Ecological Applications, 10: 1590–1619. Google Scholar
  • 43. Kunz, T. H., E. B. De Torrez, D. Bauer, T. Lobova, and T. H. Fleming. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223: 1–38. Google Scholar
  • 44. Linden, V. M. G., S. M. Weier, I. Gaigher, H. J. Kuipers, M. J. A. Weterings, and P. J. Taylor. 2014. Changes of bat activity, species richness, diversity and community composition over an altitudinal gradient in the Soutpansberg Range, South Africa. Acta Chiropterologica, 16: 27–40. Google Scholar
  • 45. Loreau, M. 2004. Does functional redundancy exist? Oikos, 104: 606–611. Google Scholar
  • 46. Marini, L., E. Bona, W. E. Kunin, and K. J. Gaston. 2011. Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography, 38: 78–88. Google Scholar
  • 47. Martins, M. A., W. D. Carvalho, D. Dias, D. S. Franca, M. B. Oliveira, and A. L. Peracchi. 2015. Bat species richness (Mammalia, Chiroptera) along an elevational gradient in the Atlantic Forest of Southeastern Brazil. Acta Chiropterologica, 17: 401–409. Google Scholar
  • 48. McCain, C. M. 2007a. Area and mammalian elevational diversity. Ecology, 88: 76–86. Google Scholar
  • 49. McCain, C. M. 2007b. Could temperature and water availability drive elevational diversity? A global case study for bats. Global Ecology and Biogeography, 16: 1–13. Google Scholar
  • 50. Meyer, W. M., K. A. Hayes, and A. L. Meyer. 2008. Giant African snail, Achatina fulica, as a snail predator. American Malacological Bulletin, 24: 117–119. Google Scholar
  • 51. Mma [Ministério do Meio Ambiente]. 2014. Lista das espécies de fauna ameacadas de extincao. Available at http://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/listade-especies.htm. Google Scholar
  • 52. Moras, L. M., L. F. O. Bernardi, G. Graciolli, and R. Gregorin. 2013. Bat flies (Diptera: Streblidae, Nycteribi idae) and mites (Acari) associated with bats (Mammalia: Chiroptera) in a high-altitude region in southern Minas Gerais, Brazil. Acta Parasitologica, 58: 556–563. Google Scholar
  • 53. Norberg, U. M. 1998. Morphological adaptations for flight in bats. Pp. 93–108, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp. Google Scholar
  • 54. Norberg, U. M., and J. M. V. Rayner. 1987. Ecological morphology and flight in bats (Mammalia, Chiroptera): wing adaptations, flight performance, foraging strategy and echo location. Philosophical transactions of the Royal Society, 1179B: 335–427. Google Scholar
  • 55. Nunes, C. A., R. F. Braga, J. E. C. Figueira, F. S. Neves, and G. W. Fernandes. 2016. Dung beetles along a tropical altitudinal gradient: environmental filtering on taxonomic and functional diversity. PLoS ONE, 11: e0157442. Google Scholar
  • 56. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'hara, G. L. Simpson, P. Solymos , et al. 2016. vegan: community ecology package. R package version 2.4-0. Available at https://CRAN.R-project.org/package=vegan. Google Scholar
  • 57. Palmer, M. 1990. The estimation of species richness by extrapolation. Ecology, 71: 1195–1198. Google Scholar
  • 58. Patterson, B. D., V. Pacheco, and S. Solari. 1996. Distribution of bats along an elevational gradient in the Andes of southeastern Peru. Journal of Zoology (London), 240: 637–658. Google Scholar
  • 59. Patterson, B. D., D. F. Stotz, S. Solari, J. W. Fitzpatrick, and V. Pacheco. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography, 25: 593–607. Google Scholar
  • 60. Pettorelli, N., J. O. Vik, J. Gaillard, C. Tucker, and N. C. Stenseth. 2005. Using the satellite derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20: 503–510. Google Scholar
  • 61. Piksa, K., J. Nowak, M. Żmihorski, and W. Bogdanowicz. 2013. Nonlinear distribution pattern of hibernating bats in caves along an elevational gradient in mountain (Carpathians, Southern Poland). PLoS ONE, 8: e68066. Google Scholar
  • 62. Pinho, F. F., G. B. Ferreira, and A. P. Paglia. 2017. Influence of vegetation physiognomy, elevation and fire frequency on medium and large mammals in two protected areas of the Espinhaço Range. Zoologia, 34: e11921. Google Scholar
  • 63. R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/. Google Scholar
  • 64. Rahbek, C. 1995. The elevational gradient of species richness a uniform pattern. Ecography, 18: 200–205. Google Scholar
  • 65. Rahbek, C. 2005. The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 224–239. Google Scholar
  • 66. Rao, C. R. 1982. Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21: 24–43. Google Scholar
  • 67. Rapini, A., P. L. Ribeiro, S. Lambert, and J. R. Pirani. 2008. A flora dos campos rupestres da Cadeia do Espinhaço. Mega diversidade, 4: 16–24. Google Scholar
  • 68. Reis, N. R., M. N. Fregonezi, A. L. Peracchi, and O. A. Shibatta. 2013. Morcegos do Brasil: guia de campo. Technical Books, Rio de Janeiro, 252 pp. Google Scholar
  • 69. Rodrigues, M. T. 2005. The conservation of Brazilian reptiles: challenges for a megadiverse country. Conservation Biology, 19: 659–664. Google Scholar
  • 70. Sanders, N., and C. Rahbek. 2012. The patterns and causes of elevational diversity gradients. Ecography, 35: 1–3. Google Scholar
  • 71. Silveira, F. A., D. Negreiros, N. P. Barbosa, E. Buisson, F. F. Carmo, D. W. Carstensen, A. A. Conceicao, T. G. Cornelissen, L. Echternacht, G. W. Fernandes , et al. 2015. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil, 403: 129–152. Google Scholar
  • 72. Stevens, G. C. 1992. The elevational gradient in altitudinal range: an extension of rapoport's latitudinal rule to altitude. American Naturalist, 140: 893–911. Google Scholar
  • 73. Stevens, R. D. 2013. Gradients of bat diversity in Atlantic forest of South America: environmental seasonality, sampling effort and spatial autocorrelation. Biotropica, 45: 764–770. Google Scholar
  • 74. Stevens, R. D., S. B. Cox, R. E. Strauss, and M. R. Willig. 2003. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters, 6: 1099–1108. Google Scholar
  • 75. Tavares, V. C., R. Gregorin, and A. L. Peracchi. 2008. Diversidade de morcegos no Brasil: lista atualizada com comentarios sobre distribuicao e taxonomia. Pp. 25–58, in Morcegos no Brasil: biologia, sistematica, ecologia econservacao ( S. M. Pacheco, R. V. Marques, and C. E. L. Esberard). Armazem Digital Comunicacao Ltda, Porto Alegre, RS, 574 pp. Google Scholar
  • 76. Tilman, D. 2001. Functional diversity. Pp. 109–120, in Encyclo pedia of biodiversity ( Levin, S. A.). Academic Press, San Diego, C.A., 870 pp. Google Scholar
  • 77. Vasconcelos, M. F., and T. A. Melo, Jr . 2001. An ornithological survey of Serra do Caraca, Minas Gerais, Brazil. Cotinga, 15: 21–31. Google Scholar
  • 78. Vitta, F. A. 2002. Diversidade e conservacao da flora nos campos rupestres da Cadeia do Espinhaço em Minas Gerais. Pp. 90–94, in Biodiversidade, conservacao e uso sustentavel da flora do Brasil ( E. L. Araujo, A. N. Moura, E. S. B. Sampaio, L. M. S. Gestinari, and J. M. T. Carneiro, eds.). Universidade Federal Rural de Pernambuco/Sociedade Botanica do Brasil, Imprensa Universitaria, Re cife, PE, 262 pp. Google Scholar
  • 79. Walther, B. A., and J. L. Moore. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28: 815–829. Google Scholar
  • 80. Williams, S. E., L. P. Shoo, R. Henriod, and R. G. Pearson. 2012. Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics Bioregion. Austral Ecology, 35: 650–664. Google Scholar
  • 81. Willig, M. R., D. M. Kaufman, and R. D. Stevens. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology and Systematics, 34: 273–309. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-bdd297a4-4d83-469c-92f2-b5a87720afb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.