PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Effect of Enterobacter sp. CS2 and EDTA on the phytoremediation of Ni-contaminated soil by Impatiens balsamina

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
During our current study we evaluated the effect of ethylenediaminetetracetic acid (EDTA) and Enterobacter sp. CS2 on nickel stress alleviation and phytoextraction by Impatiens balsamina L in spiked soil. Nickel resistant Enterobacter sp. CS2 was isolated from soil polluted by industrial effluents. The I. balsamina seeds primed with Enterobacter sp. CS2 were raised in EDTA-supplemented soil (10 mM) contaminated with 0, 100, 200, and 300 mg kg⁻¹ Ni for 50 days. The effect of different treatments on plant growth attributes, nickel tolerance index, bioconcentration factor, and translocation factor were evaluated. The Ni stress reduced plant growth, carotenoids, and chlorophyll (chl) content. However, higher Ni uptake and proline contents were observed in plants growing in Ni-contaminated soils. The Enterobacter sp. CS2 inoculation further enhanced Ni uptake and proline contents in I. balsamina plants growing under Ni stress. The inoculated plants showed improved shoot length, root length, carotenoid content, chl ‘a’ and ‘b’ contents, root and shoot dry weight. The Ni tolerance index in Enterobacter sp. CS2-assisted plants was much higher compared to un-inoculated ones. The inoculated plants supplemented with EDTA enhanced 39%, 34%, and 30% Ni uptake in roots respectively under 100, 200, and 300 mg kg⁻¹ of Ni treatment as compared with un-inoculated plants. The data regarding bioconcentration factor and translocation factor showed that Ni phytoextraction capability of I. balsamina plants was significantly enhanced with the supplementation of Enterobacter sp. CS2 and EDTA.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.425-433,fig.,ref.

Twórcy

autor
  • University of the Punjab, Lahore, Pakistan
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
autor
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
autor
  • University of the Sargodha, Sargodha, Pakistan
autor
  • University of the Punjab, Lahore, Pakistan
  • College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
autor
  • University of the Punjab, Lahore, Pakistan
  • College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China

Bibliografia

  • 1. DIN M.I., RANI A. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness. International Journal of Analytical Chemistry, 2016, 14, doi:10.1155/2016/3512145,2016.
  • 2. RANIERI E., BOMBARDELLI, F., GIKAS P., CHIAIA B. Soil Pollution Prevention and Remediation. Applied and Environmental Soil Science, 2016, 2, doi:10.1155/2016/9415175, 2016.
  • 3. WILFRIED E., RAUSER. Early effects of phytotoxic burdens of cadmium, cobalt, nickel, and zinc in white beans. Canadian Journal of Botany, 56 (15), 1744, 10.1139/b78-207, 2016.
  • 4. KHAN M.I.R., KHAN N.A., MASOOD A., PER T.S., ASGHER M. Hydrogen Peroxide Alleviates Nickel-Inhibited Photosynthetic Responses through Increase in Use-Efficiency of Nitrogen and Sulfur, and Glutathione Production in Mustard. Frontiers in Plant Science, 7, 44. http://doi.org/10.3389/fpls.2016.00044, 2016.
  • 5. MOSA K.A., SAADOUN I., KUMAR K., HELMY M., DHANKHER O.P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Frontiers in Plant Science, 7, 303. http://doi.org/10.3389/fpls.2016.00303, 2016.
  • 6. Antonkiewicz J., Kołodziej B., Bielińska E. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. International Journal of Phytoremediation, 19 (4), 309, DOI: http://dx.doi.org/10.1080/15226514.2016.12252832017.
  • 7. EBRAHIMIAN E., BYBORD A. Effect of organic acids on heavy-metal uptake and growth of canola grown in contaminated soil. Communications in Soil Sciences & Plant Analysis, 45, 1715, 2014.
  • 8. MAMDOUH A., EISSA, MOHAMED F., GHONEIM, GALAL A., EL-GHARABLY, EL-RAZEK, M.A.B.D. Phytoextraction of Nickel, Lead and Cadmium from Metals Contaminated Soils Using Different Field Crops and EDTA. World Applied Sciences Journal, 32 (6), 104, 2014.
  • 9. ALI S.K., PAUL M., CHAUDHURY S. EDTA-enhanced phytoextraction of Cd and Pb in spiked soil with Marigold and associated potential leaching risk. International Journal of Environmental & Agriculture Research, 2(5), 2454, 2016.
  • 10. CAY S., UYANIK A. ENGIN M.S. EDTA Supported Phytoextraction of Cd from Contaminated Soil by Four Different Ornamental Plant Species. Soil and Sediment Contamination, 25 (3), 346 2016.
  • 11. KHAN W.U., AHMAD S.R., YASIN N.A., ALI A., AHMAD A., AKRAM W. Application of Bacillus megaterium MCR-8 improved phytoextraction and Stress Alleviation of nickel in Vinca rosea, International Journal of Phytoremediation, DOI: 10.1080/15226514.2017.1290580, 2017.
  • 12. ANDRADES-MORENO L., DEL-CASTILLO I., PARRA R., DOUKKALI B., REDONDO-GÓMEZ S., PÉREZ-PALACIOS P., CAVIEDES M.A., PAJUELO E., RODRÍGUEZ-LLORENTE I.D. Prospecting metal resistant plant growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environmental Science & Pollution Research, 21, 3713, 2014.
  • 13. KHAN W.U., YASIN N.A., AHMAD S.R., ALI A., AHMED S., AHMAD A. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. International Journal of Phytoremediation, 19 (5), 470, DOI: 10.1080/15226514.2016.1244167, 2017.
  • 14. JUWARKAR A.A., NAIR A., DUBEY K.V., SINGH S.K., DEVOTTA S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 2, (27), 2007.
  • 15. GADD G.M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology Society Journals, 156, 609, 2010.
  • 16. BRAUD K., JÉZÉQUEL S., BAZOT T., LEBEAU. Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophoreproducing bacteria. Chemosphere, 74, 280, 2009.
  • 17. MESA V., NAVAZAS A., GONZÁLEZ-GIL R., GONZÁLEZ A., WEYENS N., LAUGA B., JOSE-LUIS R., SÁNCHEZ G.J., PELÁEZ A.I. Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied & Environmental Microbiology, 10, doi:10.1128/AEM.03411-16, 2017.
  • 18. JACKSON M.L. Soil Chemical Analysis (II Edition). Prentice Hall of India Private Limited, New Delhi, India, 1973.
  • 19. WALKELY A., BLACK I.A. An examination of Degtjareff methods for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29, 1934.
  • 20. RACHIDA C., LAURENT N., CHRISTELLE V., SANDRINE M., ALI K., THIERRY G. Determination of Calcium, Magnesium, Sodium, and Potassium in Foodstuffs by Using a Microsampling Flame Atomic Absorption Spectrometric Method After Closed-Vessel Microwave Digestion: Method Validation. Journal of AOAC International, 93 (6), 1888, 2010.
  • 21. ATMA W., LAROUCI M., MEDDAH B., BENABDELI K., SONNET P. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. International Journal of Phytoremediation, 19 (4), 377, 2017.
  • 22. ABOUDRAR W., SCHWARTZ C., BENIZRI E., MOREL J.L., BOULARBAH A. Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. International Journal of Phytoremediation, 9, 41, 2007.
  • 23. LICHTENTHALER H.K., WELLBURN A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591, 1983.
  • 24. BATES L.S., WALDREN R.P., TEARE I.D. Rapid determination of free proline for water stress studies. Plant Soil, 39, 205, 1973.
  • 25. NETTY S., WARDIYATI T., MAGHFOER M.D., HANDAYANTO E., Bioaccumulation of Nickel by Five Wild Plant Species on Nickel-Contaminated Soil. IOSR Journal of Engineering, 3, 01, 2013.
  • 26. WANG W., DENG Z., TAN H., CAO L. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. International Journal of Phytoremediation, 15 (5), 488, 2013.
  • 27. SOBARIU D.L., FERTU D.I., DIACONU M., PAVEL L.V., HLIHOR R.M., DRĂGOI E.N., CURTEANU S., LENZ M., CORVINI P.F., GAVRILESCU M. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. N Biotechnology, 1871-6784(16), 32403. doi: 10.1016/j.nbt.2016.09.002, 2016.
  • 28. SINGH S., PARIHAR P., SINGH R., SINGH V.P., PRASAD S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Frontiers in Plant Sciences, http://dx.doi.org/10.3389/fpls.2015.01143, 2016.
  • 29. SHEETAL K.R., SINGH S.D., ANAND A. et al. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian Journal of Plant Physiology, 21, 219. doi:10.1007/s40502-016-0221-8, 2016.
  • 30. OVES M., KHAN M.S., QARI A.H., FELEMBAN M.N., ALMEELBI T. Heavy Metals: Biological Importance and Detoxification Strategies. Journal of Bioremediation & Biodegradation, 7, 334. doi: 10.4172/2155-6199.1000334, 2016.
  • 31. ZAHEER M.M., YASIN N.A., AHMAD S.R., KHAN W.U., AHMAD A., ALI A., REHMAN S.U. Amelioration of Cadmium Stress in Gladiolus (Gladiolus grandiflora L.) by Application of Potassium and Silicon. Journal of Plant Nutrition (Accepted), 2017.
  • 32. VEJAN P., ABDULLAH R. KHADIRAN T., ISMAIL S., BOYCE A.N. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability - A Review. Molecules, 21, 573; doi:10.3390/molecules21050573 w. 2-17, 2016.
  • 33. QIYUAN W., DODD-IAN C., BELIMOV A.A., FAN J. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 43, 161, http://dx.doi.org/10.1071/FP15200, 2016.
  • 34. CHAUHAN J.S., RAI J.P.N. Phytoextraction of soil cadmium and zinc by microbes-inoculated Indian mustard (Brassica juncea). Journal of Plant Interactions, 4 (4), 279, DOI: 10.1080/17429140903243427, 2009.
  • 35. OVIEDO C., RODRÍGUEZ J. EDTA: the chelating agent under environmental scrutiny. Quim. Nova, 26 (6), 901, 2003.
  • 36. BÜCHERT A.M., CIVELLO P.M. MARTÍNEZ G.A. Characterization of Mg-dechelating substance in senescent and pre-senescent Arabidopsis thaliana leaves. Biologia Plantarum, 55, 75. doi:10.1007/s10535-011-0010-1, 2011.
  • 37. MAHMOOD S., DAUR., AL-SOLAIMANI S.G., AHMAD S., MADKOUR M.H., YASIR M., HIRT H., ALI S., ALI Z. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean. Frontiers in Plant Sciences, http://dx.doi.org/10.3389/fpls.2016.00876, 2016.
  • 38. HABIB S.H., KAUSAR H., SAUD H.M., ISMAIL M.R., OTHMAN R. Molecular characterization of stress tolerant plant growth promoting rhizobacteria (PGPR) for growth enhancement of rice. International Journal of Agriculture and Biology, 18, 184, 2016.
  • 39. KAMRAN M.A., SYED J.H., EQANI S.A.M.A.S. ET AL. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environmental Science & Pollution Research, 22, 9275. doi:10.1007/s11356-015-4074-x, 2015.
  • 40. KAKAR K.U., REN X.L., NAWAZ Z., CUI Z.Q., LI B., XIE G.L., HASSAN M.A., ALI E., SUN G.C. A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.). Plant Biology Journal, 18, 471, doi:10.1111/plb.12427, 2016.
  • 41. GOSWAMI D., JANKI N., PINAKIN T., DHANDHUKIA C., MORAL M.T. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2 (1), 2016.
  • 42. KISHOR K., SREENIVASULU N. Is proline accumulation correlated with stress tolerance or is proline homeostasis a more critical issue?. Plant Cell Environ, 37, 300, doi:10.1111/pce.12157, 2014.
  • 43. KHAN N., BANO A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18 (3), 211, doi: 10.1080/15226514.2015.1064352, 2016.
  • 44. GHARSALLAH C., FAKHFAKH H., GRUBB D., GORSANE F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in Tomato cultivars. AoB PLANTS (2016): plw055doi: 10.1093/aobpla/plw055, 2016.
  • 45. KUMAR V., KHARE T. Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl-) and additive stress effects of NaCl. Acta Physiol Plant, 38, 170. doi:10.1007/s11738-016-2191-x, 2016.
  • 46. ZOUARI M., BEN-AHMED C.H., ZORRIG W., ELLOUMI N., RABHI M., DELMAIL D., BENROUINA B., LABROUSSE P., BEN-ABDALLAH F. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology & Environmental Safety, 128, 100. doi: 10.1016/j.ecoenv.2016.02.015. Epub 2016 Feb 20, 2016.
  • 47. Antonkiewicz J., Kołodziej B., Bielińska E. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. International Journal of Phytoremediation, 19 (4), 309, DOI:http://dx.doi.org/10.1080/15226514.2016.1225283, 2017.
  • 48. DURAND A., PIUTTI S., RUE M., ET AL. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant and Soil February, 399 (1), 179, doi:10.1007/s11104-015-2691-2, 2016.
  • 49. FANG Q., FAN Z., XIE Y., WANG X., LI K., LIU Y. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L. Frontiers in Plant Sciences, 7, 1487. doi: 10.3389/fpls.2016.01487, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bd3d364a-812b-4229-9a10-afe8900ecd78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.