PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 65 | 2 |

Tytuł artykułu

Microbial glycosylation of flavonoids

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Flavonoids constitute a large group of polyphenolic compounds naturally found in plants, which have a wide range of biological activity. Although flavonoids are beneficial to human health, their application is limited by their low bioavailability and poor water-solubility. Therefore, recently there has been a particular interest in glycosylated forms of flavonoids, which usually are better soluble, more stable, and more functional compared to their aglycones. Microbial transformation of natural flavonoids may be an attractive way of receiving their glycosylated derivatives in amounts sufficient for the research on the effect of glycoside group on compound properties and for further application of these compounds as ingredients of dietary supplements and pharmaceuticals.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

2

Opis fizyczny

p.137-151,fig.,ref.

Twórcy

autor
  • Faculty of Food Science, Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Faculty of Food Science, Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor

Bibliografia

  • Alluis B. and O. Dangles. 1999. Acylated flavone glucosides: synthesis, conformational investigation, and complexation properties. Helv. Chim. Acta 82: 2201–2212.
  • Bartmańska A., E. Huszcza and T. Tronina. 2009. Transformation of isoxanthohumol by fungi. J. Mol. Catal. B. Enzym. 61: 221–224.
  • Bartmańska A., T. Tronina and E. Huszcza. 2012. Transformation of 8-prenylnaringenin by Absidia coerulea and Beauveria bassiana. Bioorg. Med. Chem. Lett. 22: 6451–6453.
  • Cao H., X. Chen, A.R. Jassbi and J. Xiao. 2015. Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv. 33: 214–223.
  • Chemler J.A., E. Leonard and M.A.G. Koffas. 2009. Flavonoid biotransformations in microorganisms, pp. 191–255. In: Gould K., K. Davides and C. Winefield. Anthocyanins: Biosynthesis, Functions and Applications. Springer Science+Business Media LLC. New York.
  • Chu J., X. Wu, B. Li and B. He. 2014. Efficient glucosylation of flavonoids by organic solvent-tolerant Staphylococcus saprophyticus CQ16 in aqueous hydrophilic media. J. Mol. Catal. B. Enzym. 99: 8–13.
  • Desmet T., W. Soetaert, P. Bojarovā, V. Kr’en, L. Dijkhuizen, V. Eastwick-Field and A. Schiller. 2012. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chem. Eur. J. 18: 10786–10801.
  • Feng J., W. Liang, S. Ji, X. Qiao, Y. Zhang, S. Yu and M. Ye. 2015. Microbial transformation of isoangustone A by Mucor hiemalis CGMCC 3.14114J. Chin. Pharm. Sci. 2015, 24: 285–291.
  • Forkmann G. and S. Martens. 2001. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12: 155–160.
  • Gachon C.M.M., M. Langlois-Meurinne and P. Saindrenan. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10: 542–549.
  • Gloster T.M. 2014. Advances in understanding glycosyltransferases from a structural perspective. Curr. Opin. Struct. Biol. 28: 131–141.
  • Hollman P.C., M.N. Bijsman, Y. van Gameren, E.P. Cnossen, J.H. de Vries and M.B. Katan. 1999. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 31: 569–573.
  • Hussain J., L. Ali, A.L. Khan, N.U. Rehman, F. Jabeen, J.S. Kim and A. Al-Harrasi. 2014. Isolation and bioactivities of the flavonoids morin and morin-3-O-β-D-glucopyranoside holl from Acridocarpus orientalis – a wild arabian medicinal plant. Molecules 19: 17763–17772.
  • Hyung Ko J., B. Gyu Kim and A. Joong-Hoon. 2006. Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol. Lett. 258: 263–268.
  • Jiang J.R., S. Yuan, J.F. Ding, S.C. Zhu, H.D. Xu, T. Chen, X.D. Cong, W.P. Xu, H. Ye and Y.J. Dai. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647–657.
  • Kim H.J. and I.S. Lee. 2006. Microbial metabolism of the prenylated chalcone xanthohumol. J. Nat. Prod. 69: 1522–1524.
  • Kim H.J., H.S. Park and I.S. Lee. 2006a. Microbial transformation of silybin by Trichoderma koningii. Bioorg. Med. Chem. Lett. 16: 790–793.
  • Kim J.H., K.H. Shin, J.H. Ko and JH. Ahn. 2006b. Glucosylation of flavonols by Escherichia coli expressing glucosyltransferase from rice (Oryza sativa). J. Biosci. Bioeng. 102: 135–137.
  • Kumar S. and A.K. Pandey. 2013. Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013:162750.
  • Lairson L.L., B. Henrissat, G.J. Davies and S.G. Withers. 2008. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77: 25.1–25.35.
  • Lewis P. S. Kaltia and K. Wähälä. 1998. The phase transfer catalysed synthesis of isoflavone-O-glucosides. J. Chem. Soc. Perkin Trans. 1: 2481–2484.
  • Ma B., J. Zeng, L. Shao and J. Zhan. 2013. Efficient bioconversion of quercetin into a novel glycoside by Streptomyces rimosus subsp. rimosus ATCC 10970. J. Biosci. Bioeng. 115: 24–26.
  • Maatooq G.T. and J.P. Rosazza. 2005. Metabolism of daidzein by Nocardia species NRRL 5646 and Mortierella isabellina ATCC 38063. Phytochemistry 66: 1007–1011.
  • Marvalin C. and R. Azerad. 2011. Microbial glucuronidation of polyphenols. J. Mol. Catal., B Enzym. 73: 43–52.
  • Mary S.J. and A.J. Merina. 2014. Antibacterial activity of kaempferol-3-O-Glucoside. Int. J. Sci. Res. (Ahmedabad) 3: 46–47.
  • Miyakoshi S., S. Azami and T. Kuzuyama. 2010. Microbial glucosylation of flavonols by Cunninghamella echinulata. J. Biosci. Bioeng. 110: 320–321.
  • Ochiai M., H. Fukami, M. Nakao and A. Noguchi. 2010. Method of glycosylation of flavonoid compounds. United States Patent Application Publication Pub. No.: US 2010/0256345 A1.
  • Paquette S., B.L. Møller and S. Bak. 2003. On the origin of family 1 plant glycosyltransferases. Phytochemistry 62: 399–413.
  • Palcic M.M. 2011. Glycosyltransferases as biocatalysts. Curr. Opin. Chem. Biol. 15: 226–233.
  • Rao K.V. and N.T. Weisner. 1981. Microbial transformation of quercetin by Bacillus cereus. Appl. Environ. Microbiol. 42: 450–452.
  • Salas J.A. and C. Méndez. 2007. Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol. 15: 219–232.
  • Shi Y.Q., X.L. Xin, Q.P. Yuan, C.Y. Wang, B.J. Zhang, J. Hou, Y. Tian, S. Deng, S.S. Huang and X.C. Ma. 2012. Microbial biotransformation of kurarinone by Cunninghamella echinulata AS 3.3400. J. Asian Nat. Prod. Res. 14: 1002–1007.
  • Shimoda K. and H. Hamada. 2010. Production of hesperetin glycosides by Xanthomonas campestris. Nutrients. 2: 171–180.
  • Simkhada D., N.P. Kurumbang, H.C. Lee and J.K. Sohng. 2010. Exploration of glycosylated flavonoids from metabolically engineered E. coli. Biotechnol. Bioprocess Eng. 15: 754–760.
  • Tronina T., A. Bartmańska, M. Milczarek, J. Wietrzyk, J. Popłoński, E. Rój and E. Huszcza. 2013. Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg. Med. Chem. Lett. 23: 1957–1960.
  • Wang A., F. Zhang, L. Huang, X. Yin, H. Li, Q. Wang, Z. Zeng and T. Xie. 2010. New progress in biocatalysis and biotransformation of flavonoids. J. Med. Plant Res. 4: 847–856.
  • Wang S., G. Liu, W. Zhang, N. Cai, C. Cheng, Y. Ji, L. Sun, J. Zhan and S. Yuan. 2014. Efficient glycosylation of puerarin by an organic solvent-tolerant strain of Lysinibacillus fusiformis. Enzyme Microb. Technol. 57: 42–7.
  • Wang X. 2009. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett. 585: 3303–3309.
  • Xiao J., E. Capanoglu, A.R. Jassbi and A. Miron. 2014a. The paradox of natural flavonoid C-glycosides and health benefits: When more occurrence is less research. Biotechnol. Adv. pii: S0734–9750 (14) 00177–3.
  • Xiao J., T. Chen and H. Cao. 2014b. Flavonoid glycosylation and biological benefits. Biotechnol. Adv. pii: S0734–9750(14)00092–5.
  • Xiao J., T.S. Muzashvili and M.I. Georgiev. 2014c. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 32: 1145–1156.
  • Xu J., L. Yang, S.J. Zhao, G.X. Chou and Z.T. Wang. 2011. Microbial glycosylation of cardamonin by Mucor spinosus. Acta Pharmaceutica Sinica. 46: 733–737.
  • Zhao J. and R.A. Dixon. 2009. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci. 15:72–80.
  • Zhan J. and A.A.L. Gunatilaka. 2006. Selective 4’-O-methylglycosylation of the pentahydroxy-flavonoid quercetin by Beauveria bassiana ATCC 7159. Biocatal Biotransform. 24: 396–399.
  • Zi J., J. Valiente, J. Zeng and J. Zhan. 2011. Metabolism of quercetin by Cunninghamella elegans ATCC 9245. J. Biosci. Bioeng. 112: 360–362.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bd358d5e-8542-4eea-8ff3-aff8e4b609cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.