PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 1 |

Tytuł artykułu

Effect of biostimulants on chlorophyll fluorescence parameters of broccoli (Brassica oleracea var. italica) under drought stress and rewatering

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the research was to determine the influence of biostimulants amino acids and amino acids + Ascophyllum nodosum filtrate on two broccoli cultivars ‘Agassi’ and ‘Tiburon’ and their response to soil drought. The plants were watered with Ascophyllum nodosum filtrate before planting and sprayed with amino acids after planting three times. Chlorophyll fluorescence measurements were performed before, during and after stress. They showed a considerable difference in cultivars’ response to stress, with ‘Agassi’ being more sensitive. Application of biostimulants enhanced the tolerance to drought stress. Maximum photochemical efficiency of PSII was unchanged, whereas the quantum yield of electron transport and photochemical fluorescence quenching values increased and the non-photochemical fluorescence quenching decreased. Moreover, the apparent photosynthetic electron transport rate rose. Chlorophyll content index was affected by the cultivar and application of biostimulants.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.97-106,fig.,ref.

Twórcy

  • Department of Vegetable Crops, Faculty of Horticulture and Landscape Architecture, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
  • Department of Physiology, Faculty of Agriculture and Economics, University of Agriculture in Krakow, ul. Podluzna 3, 30-239 Krakow, Poland
  • Department of Vegetable Crops, Faculty of Horticulture and Landscape Architecture, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Department of Vegetable Crops, Faculty of Horticulture and Landscape Architecture, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Department of Vegetable Crops, Faculty of Horticulture and Landscape Architecture, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland

Bibliografia

  • Arzani, K., Yazdani, N. (2008). The influence of drought stress and paclobutrazol on quantitative changes of proteins in olive (Olea europaea L.) cultivars Bladi and Mission. Acta Hortic., 791, 527−530. DOI: 10.17660/Acta Hortic.2008.791.81.
  • Bączek-Kwinta, R., Kozieł, A., Seidler-Łożykowska, K. (2011). Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? Photosynthetica, 49, 87−97. DOI: 10.1007/s11099-011-0013-3.
  • Bertamini, M., Nedunchezhian, N. (2003). Photoinhibition of photosynthesis in mature and young leaves of grapevine (Vitis vinifera L.). Plant Sci., 164, 635−644. DOI: https://doi.org/10.1016/S0168-9452(03)00018-9.
  • Björkman, O., Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489−504. DOI: 10.1007/BF00402983.
  • Borek, M., Bączek-Kwinta, R., Rapacz, M. (2016). Photosynthetic activity of variegated leaves of Coleus × hybridus hort. Cultivars characterized by chlorophyll fluorescence techniques. Photosynthetica, 54(3), 331−339. DOI: 10.1007/s11099-016-0225-7.
  • Brestic, M., Zivcak, M. (2013). PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Molecular stress physiology of plants. Rout, G.R., Das, A.B. (eds). Sprin- ger–Verlag, Berlin–Heidelberg, pp., 87–131. DOI: 10.1111/j.1469-8137.2004.01056.x.
  • Calvo, P., Nelson, L., Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3−41. DOI: 10.1007/s11104-014-2131-8.
  • Caulet, R.P., Gradinariu, G., Lurea, D., Morariu, A. (2014). Influence of furostanol glycosides treatments on strawberry (Fragaria×ananassa Duch.) growth and photosynthetic characteristics under drought condition. Sci. Hort., 169, 179−188. DOI: https://doi.org/10.1016/j.scienta.2014.02.031.
  • Chandrasekar, V., Sairam, R.K, Srivastava, G.C. (2000). Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. J. Agron. Crop Sci., 185, 219−227.
  • Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hort., 196, 28−38. Demmig, B., Björkman, O. (1987). Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and proton yield of O2 evolution in leaves of higher plants. Planta, 171, 171−184. DOI: 10.1007/BF00391092.
  • Dias, M.C., Brűggemann, W. (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48, 96−102. DOI: 10.1007/s11099-010-0013-8.
  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hort., 196, 3−14. DOI: https://doi.org/10.1016/j.scienta.2015.09.021.
  • Efeoglu, B., Ekmekçi. Y., Çiçek, N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot., 75, 34−42. DOI: https://doi.org/10.1016/j.sajb.2008.06.005.
  • Ertani, A., Schiavon, M., Muscolo, A., Nardi, S. (2013). Alfalfa plant-derived biostimulant stimulate short–term growth of salt stressed Zea mays L. plants. Plant Soil, 364, 145−158. DOI: 10.1007/s11104-012-1335-z.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 29, 185– 212. DOI: 10.1051/agro:2008021.
  • Genty, B., Briantais, J.M., Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta., 990, 87−92. DOI: https://doi.org/10.1016/S0304-4165(89)80016-9.
  • Guerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W., Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hort., 119, 257−263. DOI: https://doi.org/10.1016/j.scienta.2008.08.006.
  • Hu, W.H., Xiao, Y.A., Zeng, J.J., Hu, X.H. (2010). Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biol. Plantarum, 54, 761−765. DOI: 10.1007/s10535-010-0137-5.
  • Hura, T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., Wędzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann. Bot., 100, 767−775. DOI: org/10.1093/aob/mcm162.
  • Kałużewicz, A., Krzesiński W., Spiżewski T., Zaworska A. (2017). Effect of biostimulants on several physiological characteristics and chlorophyll content under drought stress and re-watering. Not. Bot. Hortic. Agrobot., 45, 197−202. DOI: 10.15835/nbha45110529.
  • Li, R., Guo, P., Baum, M., Grando, S., Ceccarelli, S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agri. Sci. China, 5, 751−757.
  • Lisiecka, J., Knaflewski, M., Spiżewski, T., Frąszczak, B., Kałużewicz, A., Krzesiński, W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. ‘Elsanta’. Acta Sci. Pol. Hortorum Cultus, 10, 31−40.
  • Maxwell, K., Johnson, G.N. (2000). Chlorophyll fluorescence – a practical guide. J. Exp. Bot., 51, 659−668. DOI: https://doi.org/10.1093/jexbot/51.345.659.
  • Mikiciuk, M., Dobrolmilska, R. (2014). Assessment of yield and physiological indices of small-sized tomato cv. ‘Bianka F1’ under the influence of biostimulators of marine algae origin. Acta Sci. Pol. Hortorum Cultus, 13, 31−41.
  • Przybysz, A., Wrochna, M., Słowiński, A., Gawrońska, H. (2010). Stimulatory effect of Asahi SL on selected plant species. Acta Sci. Pol. Hortorum Cultus, 9, 53−64.
  • Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A., Najafi, F. (2011). Drought stress effects on photo synthesis chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.). Acta Biol. Cracov. Bot., 53, 47−56. DOI: 10.2478/v10182-011-0007-2.
  • Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13−29.
  • Roháček, K., Barták, M. (1999). Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 37, 339−363.
  • Schreiber, U., Schliwa, U., Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res., 10, 51−56.
  • Sikder, S., Foulkes, J., West, H., De Silva, J., Gaju, O., Greenland, A., Howell, P. (2015). Evaluation of photosynthetic potential of wheat genotypes under drought condition. Photosynthetica, 53, 47−54. DOI: 10.1007/s11099-015-0082-9.
  • Subrahmanyam, D., Subash, N., Haris, A., Sikka, A.K. (2006). Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 44, 125−129.
  • Xu, C., Leskovar, D.I. (2015). Effect of A. nodosum extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hort., 183, 39−47. DOI: https://doi.org/10.1016/j.scienta.2014.12.004.
  • Zavaleta-Mancera, H.A., Lopez-Delgado, H., LozaTavera, H., Mora-Herrera, M., Trevilla-Garcia, C., Vargas-Suarez, M., Ougham, H. (2007). Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol., 164:1572−1582. DOI: 10.1016/j.jplph.2007.02.003
  • Zlatev, Z., Yordanov, I.T. (2004). Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. J. Plant Physiol., 30, 3−18.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-bd32ada5-d1cc-45d4-a4b0-4410d0af4ad3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.